Advertisement

Combinatorica

, Volume 37, Issue 3, pp 397–417 | Cite as

Warning’s Second Theorem with restricted variables

  • Pete L. Clark
  • Aden Forrow
  • John R. Schmitt
Original Paper

Abstract

We present a restricted variable generalization of Warning’s Second Theorem (a result giving a lower bound on the number of solutions of a low degree polynomial system over a finite field, assuming one solution exists). This is analogous to Schauz-Brink’s restricted variable generalization of Chevalley’s Theorem (a result giving conditions for a low degree polynomial system not to have exactly one solution). Just as Warning’s Second Theorem implies Chevalley’s Theorem, our result implies Schauz-Brink’s Theorem. We include several combinatorial applications, enough to show that we have a general tool for obtaining quantitative refinements of combinatorial existence theorems.

Let q = p be a power of a prime number p, and let F q be “the” finite field of order q.

For a 1,...,a n , N∈Z+, we denote by m(a 1,...,a n ;N)∈Z+ a certain combinatorial quantity defined and computed in Section 2.1.

Mathematics Subject Classification (2000)

11T99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Alon, D. Kleitman, R. Lipton, R. Meshulam, M. Rabin and J. Spencer: Set systems with no union of cardinality 0 modulo m, Graphs Combin. 7 (1991), 97–99.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    N. Alon and Z. Füredi: Covering the cube by affne hyperplanes, Eur. J. Comb. 14 (1993), 79–83.CrossRefzbMATHGoogle Scholar
  3. [3]
    N. Alon: Combinatorial Nullstellensatz, Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8 (1999), 7–29.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Ax: Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964), 255–261.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C. Bailey and R. B. Richter: Sum zero (mod n), size n subsets of integers, Amer. Math. Monthly 96 (1989), 240–242.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Brink: Chevalley’s theorem with restricted variables, Combinatorica 31 (2011), 127–130.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L. Carlitz: A Characterization of Algebraic Number Fields with Class Number Two, Proc. AMS 11 (1960), 391–392.MathSciNetzbMATHGoogle Scholar
  8. [8]
    G. J. Chang, S.-H. Chen., Y. Qu, G. Wang and H. Zhang: On the number of subsequences with a given sum in a finite abelian group, Electron. J. Combin. 18 (2011), Paper 133.MathSciNetzbMATHGoogle Scholar
  9. [9]
    A. Chattopadhyay, N. Goyal, P. Pudlák and D. Thérien: Lower bounds for circuits with MODm gates, Proc. 47th Annual Symp. on Foundations of Computer Science, IEEE 2006, 709–718.Google Scholar
  10. [10]
    C. Chevalley: Démonstration d’une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg 11 (1935), 73–75.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. L. Clark: The Combinatorial Nullstellensätze Revisited, Electronic Journal of Combinatorics 21 (2014), Paper #P4.15.zbMATHGoogle Scholar
  12. [12]
    S. Das Adhikari, D. J. Grynkiewicz and Z.-W. Sun: On weighted zero-sum sequences, Adv. in Appl. Math. 48 (2012), 506–527.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    L. E. Dickson: On the representation of numbers by modular forms, Bull. Amer. Math. Soc. 15 (1909), 338–347.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P. van Emde Boas and D. Kruyswijk: A combinatorial problem on finite abelian groups, III, Report ZW-1969-008, Math. Centre, Amsterdam, 1969.zbMATHGoogle Scholar
  15. [15]
    P. Erdős, A. Ginzburg and A. Ziv: Theorem in the additive number theory, Bull. Research Council Israel 10F (1961), 41–43.zbMATHGoogle Scholar
  16. [16]
    H. Esnault: Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. Math. 151 (2003), 187–191.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. R. Heath-Brown: On Chevalley-Warning theorems, Uspekhi Mat. Nauk 66 (2011), 223–232; translation in: Russian Math. Surveys 66 (2011), 427–436.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    N. M. Katz: On a theorem of Ax, Amer. J. Math. 93 (1971), 485–499.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R. N. Karasev and F. V. Petrov: Partitions of nonzero elements of a finite field into pairs, Israel J. Math. 192 (2012), 143–156.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Lasoń: A generalization of combinatorial Nullstellensatz, Electron. J. Combin. 17 (2010), Note 32.MathSciNetzbMATHGoogle Scholar
  21. [21]
    D. G. Mead and W. Narkiewicz: The capacity of C 5 and free sets in C m 2, Proc. Amer. Math. Soc. 84 (1982), 308–310.MathSciNetzbMATHGoogle Scholar
  22. [22]
    J. E. Olson: A combinatorial problem on finite Abelian groups, I. J. Number Theory 1 (1969), 8–10.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. E. Olson: A combinatorial problem on finite Abelian groups, II, J. Number Theory 1 (1969), 195–199.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S. H. Schanuel: An extension of Chevalley’s theorem to congruences modulo prime powers, J. Number Theory 6 (1974), 284–290.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    U. Schauz: Algebraically solvable problems: describing polynomials as equivalent to explicit solutions, Electron. J. Combin. 15 (2008), Research Paper 10.MathSciNetzbMATHGoogle Scholar
  26. [26]
    C. C. Tsen: Divisionsalgebren über Funktionenkörpern, Nachr. Ges. Wiss. Göttingen (1933), 335–339.Google Scholar
  27. [27]
    G. Troi and U. Zannier: On a theorem of J. E. Olson and an application (vanishing sums in finite abelian p-groups), Finite Fields Appl. 3 (1997), 378–384.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R. J. Valenza: Elasticity of factorizations in number fields, J. Number Theory 36 (1990), 212–218.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E. Warning: Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Hamburg 11 (1935), 76–83.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    R. M. Wilson: Some applications of polynomials in combinatorics, EPM lectures, May, 2006.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of MathematicsMiddleburg CollegeMiddleburgUSA

Personalised recommendations