Odd circuits in dense binary matroids


We show that, for each real number α>0 and odd integer k≥5, there is an integer c such that, if M is a simple binary matroid with |M|≥α2r(M) and with no k-element circuit, then M has critical number at most c. The result is an easy application of a regularity lemma for finite abelian groups due to Green.

This is a preview of subscription content, access via your institution.


  1. [1]

    H. H. Crapo and G.-C. Rota: On the Foundations of Combinatorial Theory: Combinatorial Geometries, Preliminary edition, MIT Press, Cambridge, 1970.

    Google Scholar 

  2. [2]

    P. Erdős and M. Simonovits: On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323–334.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    H. Furstenberg and Y. Katznelson: IP-sets, Szemerćdi’s Theorem and Ramsey Theory, Bull. Amer. Math. Soc. (N.S.) 14 (1986), 275–278.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    B. Green: A Szemeredi-type regularity lemma in abelian groups, with applications, Geometric & Functional Analysis GAFA 15 (2005), 340–376.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    J. G. Oxley: Matroid Theory, Oxford University Press, New York (2011).

    Google Scholar 

  6. [6]

    J. G. Oxley: The contributions of Dominic Welsh to matroid theory, in: Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, Oxford University Press, 2007.

    Google Scholar 

  7. [7]

    T. C. Tao and V. H. Vu: Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge (2006).

    Google Scholar 

  8. [8]

    C. Thomassen: On the chromatic number of pentagon-free graphs of large minimum degree, Combinatorica 27 (2007), 241–243.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Peter Nelson.

Additional information

This research was partially supported by a grant from the Office of Naval Research [N00014-10-1-0851].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geelen, J., Nelson, P. Odd circuits in dense binary matroids. Combinatorica 37, 41–47 (2017). https://doi.org/10.1007/s00493-015-3237-1

Download citation

Mathematics Subject Classification (2000)

  • 05B35