Counting sets with small sumset and applications

Abstract

We study the number of k-element sets A⊂ {1,...,N} with |A+A| ≤ K|A| for some (fixed) K > 0. Improving results of the first author and of Alon, Balogh, Samotij and the second author, we determine this number up to a factor of 2o ( k ) N o (1) for most N and k. As a consequence of this and a further new result concerning the number of sets A⊂ℤ/Nℤ with |A+A| ≤ c|A|2, we deduce that the random Cayley graph on ℤ/Nℤ with edge density ½ has no clique or independent set of size greater than (2+o(1)) log2 N, asymptotically the same as for the Erdős-Rényi random graph. This improves a result of the first author from 2003 in which a bound of 160log2 N was obtained. As a second application, we show that if the elements of A ⊂ ℕ are chosen at random, each with probability 1/2, then the probability that A+A misses exactly k elements of ℕ is equal to (2+O(1))k/2 as k → ∞.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Alon, J. Balogh, R. Morris and W. Samotij: A refinement of the Cameron-Erdös Conjecture, Proc. London Math. Soc. 108 (2014), 44–72.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    Y. F. Bilu, V. F. Lev and I. Z. Ruzsa: Rectification principles in additive number theory, Dedicated to the memory of Paul Erdös, Discrete Comput. Geom. 19 (1998), 343–353.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    B. Bollobás and I. Leader: Compressions and isoperimetric inequalities, J. Combin. Theory Ser. A 56 (1991), 47–62.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    J. Bourgain: Multilinear exponential sums in prime fields under optimal entropy condition on the sources, Geom. Funct. Anal. 18 (2009), 1477–1502.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    M.-C. Chang: A polynomial bound in Freiman's theorem, Duke Math. J. 113 (2002), 399–419.

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    G. A. Freiman: The addition of finite sets. I (Russian), Izv. Vysš. Učebn. Zaved. Matematika 13 (1959), 202–213.

    MathSciNet  MATH  Google Scholar 

  7. [7]

    M. Garaev: A quantified version of Bourgain's sum-product esimate in Fp for subsets of incomparable sizes, Electronic J. Combinatorics 15 (2008).

  8. [8]

    S. W. Graham and C. J. Ringrose: Lower bounds for least quadratic non-residues, in: Analytic Number Theory (Allerton Park 1989), Progress in Mathematics 85, 269–309, Birkhäuser (Basel) 1990.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    B. J. Green: Edinburgh lecture notes on Freiman’s theorem, in preparation for Online J. Analytic Combinatorics.

  10. [10]

    B. J. Green: Counting sets with small sumset, and the clique number of random Cayley graphs, Combinatorica 25 (2005), 307–326.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    B. J. Green: A Szemerédi-type regularity lemma in abelian groups, Geom. Funct. Anal. 15 (2005), 340–376.

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    B. J. Green and I. Z. Ruzsa: Counting sumsets and sum-free sets modulo a prime, Studia Sci. Math. Hungarica 41 (2004), 285–293.

    MathSciNet  MATH  Google Scholar 

  13. [13]

    B. J. Green and I. Z. Ruzsa: Sets with small sumset and rectification, Bull. London Math. Soc. 38 (2006), 43–52.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    B. J. Green and T. C. Tao: An arithmetic regularity lemma, associated counting lemma, and applications, in: An irregular mind — Szemerédi is 70, Bolyai Soc. Math. Stud. 21, 261–334, János Bolyai Math. Soc., Budapest, 2010.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    M. Krivelevich, B. Sudakov, V. H. Vu and N. C. Wormald: Random regular graphs of high degree, Random Structures Algorithms 18 (2001), 346–363.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    J. M. Pollard: A generalization of the theorem of Cauchy and Davenport, J. London Math. Soc. 2 (1974), 460–462.

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    I. Z. Ruzsa: Arithmetical progressions and the number of sums, Period. Math. Hungar. 25 (1992), 105–111.

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    T. Sanders: The structure theory of set addition revisited, Bull. Amer. Math. Soc. 50 (2013), 93–127.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    T. Schoen: The cardinality of restricted sumsets, J. Number Theory 96 (2002), 48–54.

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    T. C. Tao and V. H. Vu: Additive combinatorics, Cambridge University Press, 2006.

    Google Scholar 

  21. [21]

    D.-L Wang and P. Wang: Discrete isoperimetric problems, SIAM J. Appl. Math. 32 (1977), 860–870.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ben Green.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Green, B., Morris, R. Counting sets with small sumset and applications. Combinatorica 36, 129–159 (2016). https://doi.org/10.1007/s00493-015-3129-4

Download citation

Mathematics Subject Classification (2010)

  • 11P70
  • 60C05
  • 05A16