On the Ramsey number of the triangle and the cube


The Ramsey number r(K 3,Q n ) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K N contains either a red n-dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and Erdős conjectured that r(K 3,Q n )=2n+1−1 for every n∈ℕ, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that r(K 3,Q n )⩽7000·2n. Here we show that r(K 3,Q n )=(1+o(1))2n+1 as n→∞.

This is a preview of subscription content, access via your institution.


  1. [1]

    P. Allen, G. Brightwell and J. Skokan: Ramsey-goodness — and otherwise, Combinatorica 33 (2013), 125–160.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    N. Alon, P. Seymour and R. Thomas: A separator theorem for nonplanar graphs, J. Amer. Math. Soc. 3 (1990), 801–808.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    S. Brandt: Expanding graphs and Ramsey numbers, available at Freie Universität, Berlin preprint server, ftp://ftp.math.fu-berlin.de/pub/math/publ/pre/1996/pr-a-96-24.ps (1996).

    Google Scholar 

  4. [4]

    S. A. Burr: Ramsey numbers involving graphs with long suspended paths, J. London Math. Soc. 24 (1981), 405–413.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    S. A. Burr and P. Erdős: Generalizations of a Ramsey-theoretic result of Chvátal, J. Graph Theory 7 (1983), 39–51.

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    V. Chvátal: Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977), 93.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    D. Conlon: Hypergraph packing and sparse bipartite Ramsey numbers, Combin. Probab. Computing 18 (2009), 913–923.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    D. Conlon, J. Fox, C. Lee and B. Sudakov: Ramsey numbers of cubes versus cliques, Combinatorica, to appear.

  9. [9]

    J. Fox and B. Sudakov: Density theorems for bipartite graphs and related Ramseytype results, Combinatorica 29 (2009), 153–196.

    MathSciNet  MATH  Google Scholar 

  10. [10]

    V. Nikiforov and C. C. Rousseau: Ramsey goodness and beyond, Combinatorica 29 (2009), 227–262.

    MathSciNet  MATH  Google Scholar 

  11. [11]

    F. P. Ramsey: On a Problem of Formal Logic, Proc. London Math. Soc. 30 (1930), 264–286.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jozef Skokan.

Additional information

Research supported in part by: CNPq bolsas PDJ (GFP, SG, DS), a CNPq bolsa de Produtividade em Pesquisa (RM). This work was carried out during a visit of JS to IMPA in November 2012

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pontiveros, G.F., Griffiths, S., Morris, R. et al. On the Ramsey number of the triangle and the cube. Combinatorica 36, 71–89 (2016). https://doi.org/10.1007/s00493-015-3089-8

Download citation

Mathematics Subject Classification (2000)

  • 05C55