Abstract
We construct spanning trees in locally finite hyperbolic graphs that represent their hyperbolic compactification in a good way: so that the tree has at least one but at most a bounded number of disjoint rays to each boundary point. As a corollary we extend a result of Gromov which says that from every hyperbolic graph with bounded degrees one can construct a tree (disjoint from the graph) with a continuous surjection from the ends of the tree onto the hyperbolic boundary such that the surjection is finite-to-one. We shall construct a tree with these properties as a subgraph of the hyperbolic graph, which in addition is also a spanning tree of that graph.
This is a preview of subscription content, access via your institution.
References
- [1]
J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro and H. Short: Notes on word hyperbolic groups, Group Theory from a Geometrical Viewpoint (Trieste, 1990) (E. Ghys, A. Haeiger, and A. Verjovsky, eds.), World Scientific, 1991, 3–63.
- [2]
P. Assouad: Plongements lipschitziens dans ℝn, Bull. Soc. Math. France 111 (1983), 429–448.
- [3]
G. Bell and A. Dranishnikov: Asymptotic dimension, Topology Appl. 155 (dy2008), no. 12, 1265–1296.
- [4]
I. Benjamini and O. Schramm: Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geom. Funct. Anal. 7 (1997), 403–419.
- [5]
M. Bonk and O. Schramm: Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (dy2000), 266–306.
- [6]
M. Bourdon and H. Pajot: Cohomologie ` p et espace de Besov, J. Reine Angew. Math. 558 (2003), 85–108.
- [7]
B. H. Bowditch: A Course on Geometric Group Theory, MSJ Memoirs, vol. 16, Mathematical Society of Japan, Tokyo, 2006.
- [8]
M.R. Bridson and A. Haefliger: Metric spaces of non-positive curvature, Springer-Verlag, 1999.
- [9]
J. M. Brochet and R. Diestel Normal tree orders for infinite graphs, Trans. Am. Math. Soc. 345 (1995), 871–895.
- [10]
S. Buyalo, A. Dranishnikov and V. Schroeder: Embedding of hyperbolic groups into products of binary trees, Invent. Math. 169 (2007), 153–192.
- [11]
S. Buyalo and V. Schroeder: Elements of Asymptotic Geometry, EMS Monographs in Mathematics, EMS, Zürich}, 2007.
- [12]
M. Coornaert, T. Delzant and A. Papadopoulos: Notes sur les groupes hyperboliques de Gromov, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, 1990.
- [13]
M. Coornaert and A. Papadopoulos: Symbolic dynamics and hyperbolic groups, Springer Lecture Notes, vol. 1539, Springer-Verlag, 1993.
- [14]
R. Diestel: Graph Theory (4th edition), Springer-Verlag, 2010.
- [15]
G. Elek: The l p-cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata 68 (1997), 263–279.
- [16]
E. Ghys and P. de la Harpe: Sur les groupes hyperboliques, d’après M. Gromov, Progress in Math., vol. 83, Birkhäuser, Boston, 1990.
- [17]
M. Gromov: Hyperbolic Groups, Essays in group theory (S. M. Gersten, ed.), MSRI, vol. 8, Springer, New York, 1987, 75-263.
- [18]
M. Gromov: Asymptotic invariants of infinite groups, London Math. Soc. Lecture Notes, vol. 182, Cambridge Univ. Press, 1993.
- [19]
R. Halin: Über unendliche Wege in Graphen, Math. Ann. 157 (1964), 125–137.
- [20]
I. Holopainen, U. Lang and A. Vähäkangas: Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces, Math. Ann. 339 (2007), 101–134.
- [21]
H.A. Jung: Wurzelbäume und Kantenorientierungen in Graphen, Math. Nachr. 36 (1968), 351–359.
- [22]
H.A. Jung: Connectivity in infinite graphs, Studies in Pure Mathematics (L. Mirsky, ed.), Academic Press, 1971, 137–143.
- [23]
I. Kapovich and N. Benakli: Boundaries of hyperbolic groups, Combinatorial and Geometric Group Theory (R. Gilman et al., ed.), Contemporary Mathematics, vol. 296, 2002, 39–94.
- [24]
B. Krön and R. G. Möller: Quasi-isometries between graphs and trees, J. Combin. Theory (Series B) 98 (2008), 994–1013.
- [25]
U. Lang and T. Schlichenmaier: Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625–3655.
- [26]
J. Luukainen: Assouad Dimension: antifractal metrization, Porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), 23–76.
- [27]
W. Woess: Amenable group actions on infinite graphs, Math. Ann. 284 (1989), 251–265.
- [28]
W. Woess: Random walks on infinite graphs and groups, Cambridge University Press, 2000.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hamann, M. Spanning trees in hyperbolic graphs. Combinatorica 36, 313–332 (2016). https://doi.org/10.1007/s00493-015-3082-2
Received:
Published:
Issue Date:
Mathematics Subject Classification (2010)
- 05C05
- 20F67
- 05C63