Spanning trees in hyperbolic graphs


We construct spanning trees in locally finite hyperbolic graphs that represent their hyperbolic compactification in a good way: so that the tree has at least one but at most a bounded number of disjoint rays to each boundary point. As a corollary we extend a result of Gromov which says that from every hyperbolic graph with bounded degrees one can construct a tree (disjoint from the graph) with a continuous surjection from the ends of the tree onto the hyperbolic boundary such that the surjection is finite-to-one. We shall construct a tree with these properties as a subgraph of the hyperbolic graph, which in addition is also a spanning tree of that graph.

This is a preview of subscription content, access via your institution.


  1. [1]

    J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro and H. Short: Notes on word hyperbolic groups, Group Theory from a Geometrical Viewpoint (Trieste, 1990) (E. Ghys, A. Haeiger, and A. Verjovsky, eds.), World Scientific, 1991, 3–63.

    Google Scholar 

  2. [2]

    P. Assouad: Plongements lipschitziens dans ℝn, Bull. Soc. Math. France 111 (1983), 429–448.

    MathSciNet  MATH  Google Scholar 

  3. [3]

    G. Bell and A. Dranishnikov: Asymptotic dimension, Topology Appl. 155 (dy2008), no. 12, 1265–1296.

  4. [4]

    I. Benjamini and O. Schramm: Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geom. Funct. Anal. 7 (1997), 403–419.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    M. Bonk and O. Schramm: Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (dy2000), 266–306.

  6. [6]

    M. Bourdon and H. Pajot: Cohomologie ` p et espace de Besov, J. Reine Angew. Math. 558 (2003), 85–108.

    MathSciNet  MATH  Google Scholar 

  7. [7]

    B. H. Bowditch: A Course on Geometric Group Theory, MSJ Memoirs, vol. 16, Mathematical Society of Japan, Tokyo, 2006.

    Google Scholar 

  8. [8]

    M.R. Bridson and A. Haefliger: Metric spaces of non-positive curvature, Springer-Verlag, 1999.

    Google Scholar 

  9. [9]

    J. M. Brochet and R. Diestel Normal tree orders for infinite graphs, Trans. Am. Math. Soc. 345 (1995), 871–895.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    S. Buyalo, A. Dranishnikov and V. Schroeder: Embedding of hyperbolic groups into products of binary trees, Invent. Math. 169 (2007), 153–192.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    S. Buyalo and V. Schroeder: Elements of Asymptotic Geometry, EMS Monographs in Mathematics, EMS, Zürich}, 2007.

    Google Scholar 

  12. [12]

    M. Coornaert, T. Delzant and A. Papadopoulos: Notes sur les groupes hyperboliques de Gromov, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, 1990.

    Google Scholar 

  13. [13]

    M. Coornaert and A. Papadopoulos: Symbolic dynamics and hyperbolic groups, Springer Lecture Notes, vol. 1539, Springer-Verlag, 1993.

    Google Scholar 

  14. [14]

    R. Diestel: Graph Theory (4th edition), Springer-Verlag, 2010.

    Google Scholar 

  15. [15]

    G. Elek: The l p-cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata 68 (1997), 263–279.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    E. Ghys and P. de la Harpe: Sur les groupes hyperboliques, d’après M. Gromov, Progress in Math., vol. 83, Birkhäuser, Boston, 1990.

    Google Scholar 

  17. [17]

    M. Gromov: Hyperbolic Groups, Essays in group theory (S. M. Gersten, ed.), MSRI, vol. 8, Springer, New York, 1987, 75-263.

    Google Scholar 

  18. [18]

    M. Gromov: Asymptotic invariants of infinite groups, London Math. Soc. Lecture Notes, vol. 182, Cambridge Univ. Press, 1993.

    Google Scholar 

  19. [19]

    R. Halin: Über unendliche Wege in Graphen, Math. Ann. 157 (1964), 125–137.

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    I. Holopainen, U. Lang and A. Vähäkangas: Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces, Math. Ann. 339 (2007), 101–134.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    H.A. Jung: Wurzelbäume und Kantenorientierungen in Graphen, Math. Nachr. 36 (1968), 351–359.

    MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    H.A. Jung: Connectivity in infinite graphs, Studies in Pure Mathematics (L. Mirsky, ed.), Academic Press, 1971, 137–143.

    Google Scholar 

  23. [23]

    I. Kapovich and N. Benakli: Boundaries of hyperbolic groups, Combinatorial and Geometric Group Theory (R. Gilman et al., ed.), Contemporary Mathematics, vol. 296, 2002, 39–94.

    Google Scholar 

  24. [24]

    B. Krön and R. G. Möller: Quasi-isometries between graphs and trees, J. Combin. Theory (Series B) 98 (2008), 994–1013.

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    U. Lang and T. Schlichenmaier: Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625–3655.

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    J. Luukainen: Assouad Dimension: antifractal metrization, Porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), 23–76.

    MathSciNet  MATH  Google Scholar 

  27. [27]

    W. Woess: Amenable group actions on infinite graphs, Math. Ann. 284 (1989), 251–265.

    MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    W. Woess: Random walks on infinite graphs and groups, Cambridge University Press, 2000.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Matthias Hamann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamann, M. Spanning trees in hyperbolic graphs. Combinatorica 36, 313–332 (2016).

Download citation

Mathematics Subject Classification (2010)

  • 05C05
  • 20F67
  • 05C63