Packing anchored rectangles


Let S be a set of n points in the unit square [0,1]2, one of which is the origin. We construct n pairwise interior-disjoint axis-aligned empty rectangles such that the lower left corner of each rectangle is a point in S, and the rectangles jointly cover at least a positive constant area (about 0.09). This is a first step towards the solution of a longstanding conjecture that the rectangles in such a packing can jointly cover an area of at least 1/2.

This is a preview of subscription content, access via your institution.


  1. [1]

    Ponder this challenge: puzzle for June 2004;

  2. [2]

    M. Abramovitz and I. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1964.

    Google Scholar 

  3. [3]

    N. Bansal, A. Caprara and M. Sviridenko: A new approximation method for set covering problems, with applications to multidimensional bin packing, SIAM J. Comput. 39 (2009), 1256–1278.

    Article  MATH  MathSciNet  Google Scholar 

  4. [4]

    N. Bansal, J. Correa, C. Kenyon and M. Sviridenko: Bin packing in multiple dimensions: inapproximability results and approximation schemes, Math. Operat. Research 31 (2006), 31–49.

    Article  MATH  MathSciNet  Google Scholar 

  5. [5]

    N. Bansal, X. Han, K. Iwama, M. Sviridenko and G. Zhang: A harmonic algorithm for the 3D strip packing problem, SIAM J. Comput. 42 (2013), 579–592.

    Article  MATH  MathSciNet  Google Scholar 

  6. [6]

    A. Caprara: Packing 2-dimensional bins in harmony, in: Proc. 43rd FOCS, IEEE, 2002, 490–499.

    Google Scholar 

  7. [7]

    A. Caprara: Packing d-dimensional bins in d stages, Math. Oper. Res. 33 (2008), 203–215.

    Article  MATH  MathSciNet  Google Scholar 

  8. [8]

    M. Chlebĺk and J. Chlebĺková: Hardness of approximation for orthogonal rectangle packing and covering problems, J. Discrete Alg. 7 (3) (2009), 291–305.

    Article  Google Scholar 

  9. [9]

    T. Christ, A. Francke, H. Gebauer, J. Matousek and T. Uno: A doubly exponentially crumbled cake, Electronic Notes in Discrete Mathematics 38 (2011), 265–271.

    Article  Google Scholar 

  10. [10]

    H. T. Croft, K. J. Falconer and R. K. Guy: Unsolved Problems in Geometry, volume II of Unsolved Problems in Intuitive Mathematics, Springer, New York, 1991.

    Google Scholar 

  11. [11]

    P. Erdős and R. L. Graham: Note on packing squares with equal squares, J. Combin. Theory Ser. A 19 (1975), 119–123.

    Article  Google Scholar 

  12. [12]

    R. Harren, K. Jansen, L. Prädel and R. van Stee: A (5=3+ε)-approximation for strip packing, Comput. Geom. 47 (2014), 248–267.

    Article  MATH  MathSciNet  Google Scholar 

  13. [13]

    R. Harren, K. Jansen, L. Prädel, U. M. Schwarz and R. van Stee: Two for one: tight approximation of 2D bin packing, Int. J. Found. Comput. Sci. 24 (2013), 1299–1328.

    Article  MATH  Google Scholar 

  14. [14]

    K. Jansen and R. Solis-Oba: A polynomial time approximation scheme for the square packing problem, in: Proc. 13th IPCO, vol. 5035 of LNCS, Springer, 2008, 184–198.

    Google Scholar 

  15. [15]

    K. Jansen and G. Zhang: Maximizing the total profit of rectangles packed into a rectangle, Algorithmica 47 (3) (2007), 323–342.

    Article  MATH  MathSciNet  Google Scholar 

  16. [16]

    L. Prädel: Approximation algorithms for two-dimensional geometrical knapsack, Masters thesis, Department of Computer Science, University of Kiel, 2008.

    Google Scholar 

  17. [17]

    I. Schiermeyer: Reverse-fit: a 2-optimal algorithm for packing rectangles, in: Proc. 2nd ESA, vol. 855 of LNCS, Springer, 1994, 290–299.

    Google Scholar 

  18. [18]

    A. Steinberg: A strip-packing algorithm with absolute performance bound 2, SIAM J. Comput. 26 (2) (1997), 401–409.

    Article  MATH  MathSciNet  Google Scholar 

  19. [19]

    W. Tutte: Recent Progress in Combinatorics: Proceedings of the 3rd Waterloo Conference on Combinatorics, May 1968, Academic Press, New York, 1969.

  20. [20]

    P. Winkler: Packing rectangles, in: Mathematical Mind-Benders, A. K. Peters Ltd., Wellesley, MA, 2007, 133–134.

    Google Scholar 

  21. [21]

    P. Winkler: Puzzled: rectangles galore, Communications of the ACM 53 (11) (2010), 112.

    Article  Google Scholar 

  22. [22]

    P. Winkler: Puzzled: solutions and sources, Communications of the ACM 53 (12) (2010), 128.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Adrian Dumitrescu.

Additional information

A preliminary version of this paper appeared in the Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, (SODA 2012), Kyoto, Japan, January 2012.

Supported in part by the NSF grant DMS-1001667.

Supported in part by the NSERC grant RGPIN 35586 and the NSF grant CCF-0830734.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dumitrescu, A., Tóth, C.D. Packing anchored rectangles. Combinatorica 35, 39–61 (2015).

Download citation

Mathematics Subject Classication (2000)

  • 05B40
  • 28A75
  • 49Q10
  • 52C15