On the sum necessary to ensure that a degree sequence is potentially H-graphic

Abstract

Given a graph H, a graphic sequence π is potentially H-graphic if there is some realization of π that contains H as a subgraph. In 1991, Erdős, Jacobson and Lehel posed the following question:

Determine the minimum even integer σ(H,n) such that every n-term graphic sequence with sum at least σ(H,n) is potentially H-graphic. This problem can be viewed as a “potential” degree sequence relaxation of the (forcible) Turán problems.

While the exact value of σ(H,n) has been determined for a number of specific classes of graphs (including cliques, cycles, complete bigraphs and others), very little is known about the parameter for arbitrary H. In this paper, we determine σ(H,n) asymptotically for all H, thereby providing an Erdős-Stone-Simonovits-type theorem for the Erdős-Jacobson-Lehel problem.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    A. Busch, M. Ferrara, M. Jacobson, H. Kaul, S. Hartke and D. West: Packing of Graphic n-tuples, J. Graph Theory 70 (2012), 29–39.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    N. Bushaw and N. Kettle: Turán numbers of Multiple Paths and Equibipartite Trees, Combin. Probab. Comput. 20 (2011), 837–853.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    G. Chen, M. Ferrara, R. Gould and J. Schmitt: Graphic Sequences with a Realization Containing a Complete Multipartite Subgraph, Discrete Math. 308 (2008), 5712–5721.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    G. Chen, R. Gould, F. Pfender and B. Wei: Extremal Graphs for Intersecting Cliques, J. Combin. Theory Ser. B 89 (2003), 159–181.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    G. Chen, J. Li and J. Yin: A variation of a classical Turán-type extremal problem, European J. Comb. 25 (2004), 989–1002.

    Article  MATH  Google Scholar 

  6. [6]

    M. Chudnovsky and P. Seymour: Rao's Degree Sequence Conjecture, J. Combin. Theory Ser. B 105 (2014), 44–92.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    Z. Dvorák and B. Mohar: Chromatic number and complete graph substructures for degree sequences, Combinatorica 33 (2013) 513–529.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    C. Erbes, M. Ferrara, R. Martin and P. Wenger: On the Approximate Shape of Degree Sequences the are not Potentially H-graphic, 2013 submitted, arXiv:1303.5622.

    Google Scholar 

  9. [9]

    P. Erdős, Z. Furedi, R. Gould and D. Gunderson: Extremal Graphs for Intersecting Triangles, J. Combin. Theory Ser. B 64 (1995), 89–100.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    P. Erdős and T. Gallai: Graphs with prescribed degrees, Matematikai Lapok 11 (1960), 264–274 (in Hungarian).

    MATH  Google Scholar 

  11. [11]

    P. Erdős, M. Jacobson and J. Lehel: Graphs Realizing the Same Degree Sequence and their Respective Clique Numbers, Graph Theory, Combinatorics and Applications (eds. Alavi, Chartrand, Oellerman and Schwenk), Vol. I, 1991, 439–449.

    MathSciNet  MATH  Google Scholar 

  12. [12]

    P. Erdős and M. Simonovits: A Limit Theorem in Graph Theory, Studia Sci. Math. Hungar. 1 (1966), 51–57.

    MathSciNet  MATH  Google Scholar 

  13. [13]

    P. Erdős and A. Stone: On the Structure of Linear Graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    M. Ferrara: Graphic Sequences with a Realization Containing a Union of Cliques, Graphs Comb. 23 (2007), 263–269.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    M. Ferrara and J. Schmitt: A General Lower Bound for Potentially H-Graphic Sequences, SIAM J. Discrete Math. 23 (2009), 517–526.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    R. Gould, M. Jacobson and J. Lehel: Potentially G-graphic degree sequences, Combinatorics, Graph Theory, and Algorithms (eds. Alavi, Lick and Schwenk), Vol. I, New York: Wiley & Sons, Inc., 1999, 387–400.

    Google Scholar 

  17. [17]

    S.L. Hakimi: On the realizability of a set of integers as degrees of vertices of a graph, J. SIAM Appl. Math, 10 (1962), 496–506.

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    S. Hakimi and E. Schmeichel: Graphs and their degree sequences: A survey, in: Theory and Applications of Graphs, volume 642 of Lecture Notes in Mathematics, Springer Berlin / Heidelberg, 1978, 225–235.

    Google Scholar 

  19. [19]

    V. Havel: A remark on the existence of finite graphs (Czech.), Časopis Pěst. Mat. 80 (1955), 477–480.

    MATH  Google Scholar 

  20. [20]

    D. Kleitman and D. Wang: Algorithms for constructing graphs and digraphs with given valences and factors, Discrete Math. 6 (1973), 79–88.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    J. Li and Z. Song: An extremal problem on the potentially Pk-graphic sequences, The International Symposium on Combinatorics and Applications (W.Y.C. Chen et. al., eds.), Tanjin, Nankai University 1996, 269–276.

    Google Scholar 

  22. [22]

    J. Li and Z. Song: The smallest degree sum that yields potentially Pk-graphical sequences, J. Graph Theory 29 (1998), 63–72.

    Article  MATH  Google Scholar 

  23. [23]

    J. Li, Z. Song and R. Luo: The Erdős-Jacobson-Lehel conjecture on potentially Pk-graphic sequences is true, Science in China, Ser. A 41 (1998), 510–520.

    Article  MATH  Google Scholar 

  24. [24]

    J. Li and J. Yin: Two suffcient conditions for a graphic sequence to have a realization with prescribed clique size, Discrete Math. 301 (2005), 218–227.

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    J. Li and J. Yin: An extremal problem on potentially Kr;s-graphic sequences, Discrete Math. 260 (2003), 295–305.

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    J. Li and J. Yin: A variation of a conjecture due to Erdős and Sos, Acta Math. Sin. 25 (2009), 795–802.

    MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    W. Mantel: Problem 28, soln by H. Gouwentak, W. Mantel, J Teixeira de Mattes, F. Schuh and W.A. Wytho, Wiskundige Opgaven 10 (1907), 60–61.

    Google Scholar 

  28. [28]

    J. Petersen: Die Theorie der regularen Graphen, Acta Math. 15 (1891), 193–220.

    MathSciNet  Article  Google Scholar 

  29. [29]

    A. R. Rao: The clique number of a graph with a given degree sequence, in: Proceedings of the Symposium on Graph Theory, volume 4 of ISI Lecture Notes, Macmillan of India, New Delhi, 1979, 251–267.

    Google Scholar 

  30. [30]

    S. B. Rao: A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences, in: Combinatorics and graph theory, volume 885 of Lecture Notes in Math., Springer, Berlin, 1981, 417–440.

    Google Scholar 

  31. [31]

    N. Robertson and Z. Song: Hadwiger number and chromatic number for near regular degree sequences, J. Graph Theory 64 (2010), 175–183.

    MathSciNet  MATH  Google Scholar 

  32. [32]

    P. Turan: Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452.

    MathSciNet  MATH  Google Scholar 

  33. [33]

    J. Yin: A Rao-type characterization for a sequence to have a realization containing a split graph, Discrete Math. 311 (2011), 2485–2489.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Ferrara.

Additional information

Research Supported in part by Simons Foundation Collaboration Grant #206692.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferrara, M.J., Lesaulnier, T.D., Moffatt, C.K. et al. On the sum necessary to ensure that a degree sequence is potentially H-graphic. Combinatorica 36, 687–702 (2016). https://doi.org/10.1007/s00493-015-2986-1

Download citation

Mathematics Subject Classification (2000)

  • 05C07
  • 05C35