, Volume 37, Issue 1, pp 49–76 | Cite as

Counting flags in triangle-free digraphs

  • Jan Hladký
  • Daniel Král’
  • Sergey Norin
Original Paper


Motivated by the Caccetta-Häggkvist Conjecture, we prove that every digraph on n vertices with minimum outdegree 0:3465n contains an oriented triangle. This improves the bound of 0:3532n of Hamburger, Haxell and Kostochka. The main new tool we use in our proof is the theory of flag algebras developed recently by Razborov.

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Baber and J. Talbot: Hypergraphs do jump, Combin. Probab. Comput. 20 (2011), 161–171.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. A. Bondy: Counting subgraphs: a new approach to the Caccetta-Häggkvist conjecture, Discrete Math. 165/166 (1997), 71–80.CrossRefzbMATHGoogle Scholar
  3. [3]
    L. Caccetta and R. Häggkvist: On minimal digraphs with given girth, in: Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1978), Congress. Numer., XXI, 181-187, Winnipeg, Man., 1978. Utilitas Math.Google Scholar
  4. [4]
    M. Chudnovsky, P. Seymour and B. Sullivan: Cycles in dense digraphs, Combinatorica 28 (2008), 1–18.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Cummings, D. Král’, F. Pfender, K. Sperfeld, A. Treglown and M. Young: Monochromatic triangles in three-coloured graphs, J. Combin. Theory Ser. B 103 (2013), 489–503.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Das, H. Huang, J. Ma, H. Naves and B. Sudakov: A problem of Erdős on the minimum number of k-cliques, J. Combin. Theory Ser. B 103 (2013), 344–373.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Dunkum, P. Hamburger and A. Pór: Destroying cycles in digraphs, Combinatorica 31 (2011), 55–66.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Grzesik: On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B 102 (2012), 1061–1066.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Hamburger, P. Haxell and A. Kostochka: On directed triangles in digraphs, Electron. J. Combin. 14 Note 19, (electronic), 2007.Google Scholar
  10. [10]
    H. Hatami, J. Hladký, D. Král’, S. Norine and A. Razborov: Non-threecolorable common graphs exist, Combin. Probab. Comput. 21 (2012), 734–742.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H. Hatami, J. Hladký, D. Král’, S. Norine and A. Razborov: On the number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A 120 (2013), 722–732.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    H. Hatami and S. Norine: Undecidability of linear inequalities in graph homomorphism densities, J. Amer. Math. Soc. 24 (2011), 547–565.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D. Král’, C.-H. Liu, J.-S. Sereni, P. Whalen and Z. B. Yilma: A new bound for the 2=3 conjecture, Combin. Probab. Comput. 22 (2013), 384–393.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    L. Lovász and B. Szegedy: Limits of dense graph sequences, J. Combin. Theory Ser. B 96 (2006), 933–957.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    L. Lovász and B. Szegedy: Random graphons and a weak Positivstellensatz for graphs, J. Graph Theory 70 (2012), 214–225.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    O. Pikhurko and E. R. Vaughan: Minimum number of k-cliques in graphs with bounded independence number, Combin. Probab. Comput. 22 (2013), 910–934.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. A. Razborov: Flag algebras, J. Symbolic Logic 72 (2007), 1239–1282.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. A. Razborov: On the minimal density of triangles in graphs, Combin. Probab. Comput. 17 (2008), 603–618.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. A. Razborov: On 3-hypergraphs with forbidden 4-vertex configurations, SIAM J. Discrete Math. 24 (2010), 946–963.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. A. Razborov: On the Caccetta-Häggkvist conjecture with forbidden subgraphs, J. Graph Theory 74 (2013), 236–248.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Shen: Directed triangles in digraphs, J. Combin. Theory Ser. B 74 (1998), 405–407.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    B. Sullivan: A summary of results and problems related to the Caccetta-Häggkvist conjecture, unpublished, 2006.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Mathematics of the Academy of Sciences of the Czech RepublicPrahaCzech Republic
  2. 2.Mathematics Institute and Department of Computer ScienceUniversity of WarwickCoventryUK
  3. 3.Department of Mathematics & StatisticsMcGill UniversityMontrealCanada

Personalised recommendations