Advertisement

Perfect Matchings in Õ (n1.5) Time in Regular Bipartite Graphs

  • Ashish Goel
  • Michael Kapralov
  • Sanjeev Khanna
Article
  • 13 Downloads

Mathematics Subject Classification (2010)

68Q25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Aggarwal, R. Motwani, D. Shah, and A. Zhu: Switch scheduling via randomized edge coloring, FOCS, 2003.CrossRefGoogle Scholar
  2. [2]
    A. A. Benczúr, and D. R. Karger: Approximating s-t minimum cuts in ~O (n2) time, Proceedings of the 28th annual ACM symposium on Theory of computing, 1996.Google Scholar
  3. [3]
    G. Birkhoff: Tres observaciones sobre el algebra lineal, Univ. Nac. Tucumán Rev. Ser. A 5 (1946), 147–151.Google Scholar
  4. [4]
    B. Bollobás: Modern graph theory, Springer, 1998.CrossRefzbMATHGoogle Scholar
  5. [5]
    R. Cole and J. E. Hopcroft: On edge coloring bipartite graphs. SIAM J. Comput. 11 (1982), 540–546.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Cole, K. Ost, and S. Schirra: Edge-coloring bipartite multigraphs in O(ElogD) time, Combinatorica 21 (2001), 5–12.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H. N. Gabow and O. Kariv:Algorithms for edge coloring bipartite graphs and multigraphs, SIAM J. Comput. 11 (1982), 117–129.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Goel, M. Kapralov, and S. Khanna: Perfect matchings via uniform sampling in regular bipartite graphs, Proceedings of the Nineteenth Annual ACM -SIAM Sym-posium on Discrete Algorithms, 2009.Google Scholar
  9. [9]
    J. E. Hopcroft and R. M. Karp: An n 5 2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput. 2 (1973), 225–231.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. Karger: Random sampling in cut, flow, and network design problems, Mathe-matics of Operations Research (Preliminary version appeared in the Proceedings of the 26th annual ACM symposium on Theory of computing) 24 (1999), 383–413.MathSciNetzbMATHGoogle Scholar
  11. [11]
    D. Karger and M. Levine: Random sampling in residual graphs, Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, 2002.Google Scholar
  12. [12]
    D. R. Karger and C. Stein: A new approach to the minimum cut problem, J. ACM 43 (1996), 601–640.MathSciNetzbMATHGoogle Scholar
  13. [13]
    D. Konig: Uber graphen und ihre anwendung auf determinententheorie und mengenlehre, Math. Annalen 77 (1916), 453–465.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Motwani: Average-case analysis of algorithms for matchings and related problems, Journal of the ACM(JACM) 41 (1994), 1329–1356.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R. Motwani and P. Raghavan: Randomized Algorithms, Cambridge University Press, 1995.CrossRefzbMATHGoogle Scholar
  16. [16]
    A. Schrijver: Bipartite edge coloring in O time, SIAM J. on Comput. 28 (1999), 841–846.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. von Neumann: A certain zero-sum two-person game equivalent to the optimal assignment problem, Contributions to the optimal assignment problem to the Theory of Games 2 (1953), 5–12.MathSciNetGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Management Science and Engineering and (by courtesy) Computer ScienceStanford UniversityStanfordUSA
  2. 2.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.School of Computer, and Communication SciencesÉcole Polytechnique Fédérale de LausanneÉcublensSwitzerland

Personalised recommendations