Sabidussi versus Hedetniemi for three variations of the chromatic number

Abstract

We investigate vector chromatic number (χ vec ), Lovász V-function of the complement \((\bar \vartheta )\), and quantum chromatic number (χ q ) from the perspective of graph homomorphisms. We prove an analog of Sabidussi's theorem for each of these parameters, i.e., that for each of the parameters, the value on the Cartesian product of graphs is equal to the maximum of the values on the factors. Interestingly, as a consequence of this result for \(\bar \vartheta\), we obtain analog of Hedetniemi's conjecture, i.e., that the value of \(\bar \vartheta\) on the categorical product of graphs is equal to the minimum of its values on the factors. We conjecture that the analogous results hold for vector and quantum chromatic number, and we prove that this is the case for some special classes of graphs.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S. Arora and B. Barak: Computational Complexity: A Modern Approach, Cambridge University Press, 2009.

    Google Scholar 

  2. [2]

    D. Avis, J. Hasegawa, Y. Kikuchi and Y. Sasaki: A quantum protocol to win the graph colouring game on all Hadamard graphs, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A (2006), 1378–1381.

    Article  Google Scholar 

  3. [3]

    G. Brassard, R. Cleve and A. Tapp: Cost of exactly simulating quantum entan-glement with classical communication, Phys. Rev. Lett. 83 (1999), 1874–1877.

    Article  Google Scholar 

  4. [4]

    H. Buhrman, R. Cleve and A. Wigderson: Quantum vs. classical communication and computation, in: Proceedings of the thirtieth annual ACM symposium on Theory of computing, STOC ′98, 63–68. ACM, 1998.

    Google Scholar 

  5. [5]

    P. J. Cameron, A. Montanaro, M. W. Newman, S. Severini and A. Winter: On the quantum chromatic number of a graph, Electr. J. Comb. 14 (2007).

  6. [6]

    R. Cleve, P. Hoyer, B. Toner and J. Watrous: Consequences and limits of nonlocal strategies, in: 19th IEEE Annual Conference on Computational Complexity, 236–249, 2004.

    Google Scholar 

  7. [7]

    P. Frankl and Vojtěech Röodl: Forbidden intersections, Trans. Amer. Math. Soc. 300 (1987), 259–286.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    J. Fukawa, H. Imai and F. Le Gall: Quantum coloring games via symmetric SAT games, in: Asian Conference on Quantum Information Science (AQIS'11), 2011.

    Google Scholar 

  9. [9]

    V. Galliard and S. Wolf: Pseudo-telepathy, entanglement, and graph colorings, in: IEEE International Symposium on Information Theory, 101, 2002.

  10. [10]

    C. Godsil: Equiarboreal graphs, Combinatorica 1 (1981), 163–167.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    C. Godsil: Interesting graphs and their colourings, Unpublished notes, 2003.

    Google Scholar 

  12. [12]

    C. Godsil and G. Royle: Algebraic Graph Theory, Springer-Verlag, New York, 2001.

    Google Scholar 

  13. [13]

    G. Hahn and C. Tardif: Graph homomorphisms: structure and symmetry, in: Graph symmetry, vol. 497 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 107–166, Kluwer Acad. Publ., 1997.

    Google Scholar 

  14. [14]

    R. Hammack, W. Imrich and S. Klavžzar: Handbook of Product Graphs, Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2011.

    Google Scholar 

  15. [15]

    P. Hell and J. Nešsetřril: Graphs and Homomorphisms, Oxford University Press, 2004.

    Google Scholar 

  16. [16]

    D. Karger, R. Motwani and M. Sudan: Approximate graph coloring by semidef-inite programming, J. ACM 45 (1998), 246–265.

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    D. E. Knuth: The sandwich theorem, Electr. J. Comb. 1 (1994).

  18. [18]

    László Lovász: On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979), 1–7.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    L. Mančcinska, G. Scarpa and S. Severini: New separations in zero-error channel capacity through projective Kochen-Specker sets and quantum coloring, Advanced online publication, 2013.

    Google Scholar 

  20. [20]

    R. J. McEliece, E. R. Rodemich and H. C. Rumsey, Jr: The Lovász bound and some generalizations, J. Combin. Inform. System Sci. 3 (1978), 134–152.

    MathSciNet  MATH  Google Scholar 

  21. [21]

    M. A. Nielsen and I. L. Chuang: Quantum Computation and Quantum Information, Cambridge University Press, 2000.

    Google Scholar 

  22. [22]

    D. Roberson and L. Mančcinska: Graph homomorphisms for quantum players, 2012.

    Google Scholar 

  23. [23]

    G. Sabidussi: Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426–438.

    MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    G. Scarpa and S. Severini: Kochen-Specker sets and the rank-1 quantum chromatic number, IEEE Trans. Inf. Theory 58 (2012), 2524–2529.

    MathSciNet  Article  Google Scholar 

  25. [25]

    A. Schrijver: A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inform. Theory 25 (1979), 425–429.

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    X. Zhu: The fractional version of Hedetniemi's conjecture is true, European J. Combin. 32 (2011), 1168–1175.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David E. Roberson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Godsil, C., Roberson, D.E., Šámal, R. et al. Sabidussi versus Hedetniemi for three variations of the chromatic number. Combinatorica 36, 395–415 (2016). https://doi.org/10.1007/s00493-014-3132-1

Download citation

Mathematics Subject Classification (2010)

  • 05C15
  • 05C50
  • 05C62