Embedding a graph-like continuum in a surface

Abstract

Graph-like continua provide a very natural setting for generalizing finite graphs to infinite, compact structures. For example, the Freudenthal compactification of a locally finite graph, exploited by Diestel and his students in their study of the cycle space of an infinite graph, is an example of a graph-like continuum. Generalizing earlier works in special cases, the authors, along with Christian, have proved MacLane’s and Whitney’s characterizations of planarity for graph-like continua (Electron. J. Combin. 17 (2010)). In this work, we consider embeddings of graph-like continua in compact surfaces and show that: (i) every edge is in an open disc that meets the graph-like continuum precisely in that edge; (ii) there are natural analogues of face boundary walks; (iii) there is a graph-like continuum triangulating the same surface and containing as a sub-graphlike continuum the original embedded graph-like continuum; (iv) the face boundaries generate a subspace of the cycle space; and (v) the quotient of the cycle space by the boundary cycles is the homology of the surface. These all generalize results known for embeddings of finite graphs.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Bowler, J. Carmesin and R. Christian: Infinite graphic matroids, Part I, preprint 2013, arXiv:1309.3735v1.

    Google Scholar 

  2. [2]

    H. Bruhn: The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits, J. Combin. Theory Ser. B 92 (2004), 235–256.

    MATH  MathSciNet  Article  Google Scholar 

  3. [3]

    H. Bruhn and M. Stein: MacLane’s planarity criterion for locally finite graphs, J. Combin. Theory Ser. B 96 (2006), 225–239.

    MATH  MathSciNet  Article  Google Scholar 

  4. [4]

    C. O. Christenson and W. L. Voxman: Aspects of topology, 2nd ed., BCS Assocs., Moscow, ID, 1998.

    Google Scholar 

  5. [5]

    R. Christian, R. B. Richter and B. Rooney: The planarity theorems of MacLane and Whitney for graph-like continua, Electron. J. Combin. 17 (2010), Research Paper 12, 10.

    MathSciNet  Google Scholar 

  6. [6]

    R. Diestel: The cycle space of an infinite graph, Combin. Probab. Comput. 14 (2005), 59–79.

    MATH  MathSciNet  Article  Google Scholar 

  7. [7]

    R. Diestel and D. Kühn: Topological paths, cycles and spanning trees in infinite graphs, European J. Combin. 25 (2004), 35–862.

    MathSciNet  Article  Google Scholar 

  8. [8]

    P. Hoffman and B. Richter: Embedding graphs in surfaces, J. Combin. Theory Ser. B 36 (1984), 65–84.

    MATH  MathSciNet  Article  Google Scholar 

  9. [9]

    S. B. Nadler Jr.: Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158. Marcel Dekker, Inc., New York, 1992.

    Google Scholar 

  10. [10]

    I. Richards: On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259–269.

    MATH  MathSciNet  Article  Google Scholar 

  11. [11]

    R. B. Richter and H. Shank: The cycle space of an embedded graph, J. Graph Theory 8 (1984), 365–369.

    MATH  MathSciNet  Article  Google Scholar 

  12. [12]

    R. B. Richter and C. Thomassen: 3-connected spaces uniquely embed in the sphere, Trans. Amer. Math. Soc. 354 (2002), 4585–4595.

    MATH  MathSciNet  Article  Google Scholar 

  13. [13]

    B. Rooney: Maclane’s Theorem for Graph-Like Spaces, M. Math. thesis, U. Waterloo, 2008 (http://hdl.handle.net.proxy.lib.uwaterloo.ca/10012/3980)

    Google Scholar 

  14. [14]

    C. Thomassen: The Jordan-Schönflies Theorem and the classification of surfaces, Amer. Math. Monthly 99 (1992), 116–130.

    MATH  MathSciNet  Article  Google Scholar 

  15. [15]

    C. Thomassen and A. Vella: Graph-like continua, augmenting arcs, and Menger’s theorem, Combinatorica 28 (2008), 595–623.

    MATH  MathSciNet  Article  Google Scholar 

  16. [16]

    A. Vella and R. B. Richter: Cycle spaces in topological spaces, J. Graph Theory 59 (2008), 115–144.

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Bruce Richter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Richter, R.B., Rooney, B. Embedding a graph-like continuum in a surface. Combinatorica 35, 669–694 (2015). https://doi.org/10.1007/s00493-014-3079-2

Download citation

Mathematics Subject Classification (2000)

  • 54F50
  • 05C10
  • 57M15
  • 57N05