Abstract
A total weighting of a graph G is a mapping ϕ that assigns to each element z ∈ V (G)∪E(G) a weight ϕ(z). A total weighting ϕ is proper if for any two adjacent vertices u and v, ∑ e∈E(u) ϕ(e)+ϕ(u)≠∑ e∈E(v) ϕ(e)+ϕ(v). This paper proves that if each edge e is given a set L(e) of 3 permissible weights, and each vertex v is given a set L(v) of 2 permissible weights, then G has a proper total weighting ϕ with ϕ(z) ∈ L(z) for each element z ∈ V (G)∪E(G).
This is a preview of subscription content, access via your institution.
References
- [1]
L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed: Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005), 237–244.
- [2]
L. Addario-Berry, K. Dalal, C. McDiarmid, B. A. Reed and A. Thomason: Vertex-colouring edge-weightings, Combinatorica 27 (2007), 1–12.
- [3]
N. Alon: Combinatorial Nullstellensatz, Combin. Prob. Comput. 8 (1999), 7–29.
- [4]
N. Alon and M. Tarsi: A nowhere zero point in linear mappings, Combinatorica 9 (1989), 393–395.
- [5]
N. Alon and M. Tarsi: Colorings and orientations of graphs, Combinatorica 12 (1992), 125–134.
- [6]
T. Bartnicki, J. Grytczuk and S. Niwczyk: Weight choosability of graphs, J. Graph Theory 60 (2009), 242–256.
- [7]
M. Karoński, T. Luczak and A. Thomason: Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004), 151–157.
- [8]
M. Kalkowski: On 1,2-conjecture, manuscript, 20–8.
- [9]
M. Kalkowski, M. Karoński and F. Pfender: Vertex-coloring edge-weightings: towards the 1-2-3- Conjecture, J. Combin. Theory Ser. B 100 (2010), 347–349.
- [10]
J. Przybyło and M. Woźniak: On a 1-2 conjecture, Discrete Mathematics and Theoretical Computer Science 12 (2010), 101–108.
- [11]
J. Przybyło and M. Woźniak: Total weight choosability of graphs, Electronic J. Combinatorics 18 (2011), no. 1, Paper #P112.
- [12]
T. Wang and Q. L. Yu: A note on vertex-coloring 13-edge-weighting, Frontier Math. 4 in China 3 (2008), 1–7.
- [13]
T. Wong, J. Wu and X. Zhu: Total weight choosability of Cartesian product of graphs, European J. Combinatorics 33 (2012), 1725–1738.
- [14]
T. Wong, D. Yang and X. Zhu: List total weighting of graphs, in: Fete of combinatorics and computer science, 337–353. Bolyai Soc. Math. Stud., 20, János Bolyai Math. Soc., Budapest, 2010.
- [15]
T. Wong and X. Zhu: Total weight choosability of graphs, J. Graph Theory 66 (2011), 198–212.
- [16]
T. Wong and X. Zhu: Permanent index of matrices associated with graphs, manuscript.
Author information
Affiliations
Corresponding author
Additional information
Grant numbers: NSC102-2115-M-110-006-MY2.
Grant numbers: NSF11171310 and ZJNSF Z6110786.
Rights and permissions
About this article
Cite this article
Wong, TL., Zhu, X. Every graph is (2,3)-choosable. Combinatorica 36, 121–127 (2016). https://doi.org/10.1007/s00493-014-3057-8
Received:
Published:
Issue Date:
Mathematics Subject Classification (2000)
- 05C50
- 05C78