Intersecting 1-factors and nowhere-zero 5-flows


Let G be a bridgeless cubic graph, and μ 2(G) the minimum number k such that two 1-factors of G intersect in k edges. A cyclically n-edge-connected cubic graph G has a nowhere-zero 5-flow if (1) n≥6 and μ 2(G)≤2 or (2) if n≥5μ 2(G)−3.

This is a preview of subscription content, access via your institution.


  1. [1]

    J. A. Bondy: Balanced Colourings and the four colour conjecture, Proc. Amer. Math. Soc. 33 (1972), 241–244.

    MATH  MathSciNet  Article  Google Scholar 

  2. [2]

    F. Jaeger: Balanced valuations and flows in multigraphs, Proc. Amer. Math. Soc. 55 (1975), 237–242.

    MathSciNet  Article  Google Scholar 

  3. [3]

    F. Jaeger: Nowhere-zero flow problems, in: L. W. Beineke, R. J. Wilson eds., Topics in Graph Theory 3, Academic Press, London (1988), 70–95.

    Google Scholar 

  4. [4]

    M. Kochol: Reduction of the 5-flow conjecture to cyclically 6-edge-connected snarks, J. Combin. Theory, Ser. B 90 (2004), 139–145.

    MATH  MathSciNet  Article  Google Scholar 

  5. [5]

    P. D. Seymour: Nowhere-zero 6-flows, J. Combin. Theory, Ser. B 30 (1981), 130–135.

    MATH  MathSciNet  Article  Google Scholar 

  6. [6]

    P. D. Seymour: Nowhere-zero flows, in: Handbook of Combinatorics (Vol. 1), R. L. Graham, M. Grötschel, L. Lovász (eds.), Elsevier Science B.V. Amsterdam (1995), 289–299.

    Google Scholar 

  7. [7]

    E. Steffen: Tutte’s 5-flow conjecture for highly cyclically connected cubic graphs, Discrete Math. 310 (2010), 385–389.

    MATH  MathSciNet  Article  Google Scholar 

  8. [8]

    W. T. Tutte: A contribution to the theory of chromatic polynomials, Canadian J. Math. 6 (1954), 80–91.

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Eckhard Steffen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steffen, E. Intersecting 1-factors and nowhere-zero 5-flows. Combinatorica 35, 633–640 (2015).

Download citation

Mathematics Subject Classification (2010)

  • 05C21
  • 05C70
  • 05C15