, Volume 35, Issue 5, pp 513–551 | Cite as

Many non-equivalent realizations of the associahedron

  • Cesar Ceballos
  • Francisco Santos
  • Günter M. Ziegler
Original Paper


Hohlweg and Lange (2007) and Santos (2004, unpublished) have found two different ways of constructing exponential families of realizations of the n-dimensional associahedron with normal vectors in {0, ±1} n , generalizing the constructions of Loday (2004) and Chapoton-Fomin-Zelevinsky (2002). We classify the associahedra obtained by these constructions modulo linear equivalence of their normal fans and show, in particular, that the only realization that can be obtained with both methods is the Chapoton-Fomin-Zelevinsky (2002) associahedron.

For the Hohlweg-Lange associahedra our classification is a priori coarser than the classification up to isometry of normal fans, by Bergeron-Hohlweg-Lange-Thomas (2009). However, both yield the same classes. As a consequence, we get that two Hohlweg-Lange associahedra have linearly equivalent normal fans if and only if they are isometric.

The Santos construction, which produces an even larger family of associahedra, appears here in print for the first time. Apart of describing it in detail we relate it with the c-cluster complexes and the denominator fans in cluster algebras of type A.

A third classical construction of the associahedron, as the secondary polytope of a convex n-gon (Gelfand-Kapranov-Zelevinsky, 1990), is shown to never produce a normal fan linearly equivalent to any of the other two constructions.

Mathematics Subject Classification (2000)

52B05 52B11 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Ardila, C. Benedetti and J. Doker: Matroid polytopes and their volumes, Discrete Comput. Geometry 43 (2010), 841–854.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Bergeron, C. Hohlweg, C. Lange and H. Thomas: Isometry classes of generalized associahedra, Sém. Lotharingien Combinat. 61A (2009), Article B61A.MathSciNetGoogle Scholar
  3. [3]
    L. J. Billera and B. Sturmfels: Fiber polytopes, Annals of Math. 135 (1992), 527–549.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    V. M. Buchstaber: Lectures on Toric Topology, Toric Topology Workshop, KAIST 2008, Trends in Mathematics, Information Center of Mathematical Sciences, Vol. 11, No. 1, 2008, 1–55.MathSciNetGoogle Scholar
  5. [5]
    C. Ceballos, J.-Ph. Labbé and Ch. Stump: Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebraic Combin. 39 (2014), 17–51.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    C. Ceballos and V. Pilaud: Denominator vectors and compatibility degrees in cluster algebras of finite type, Trans. Amer. Math. Soc., to appear.Google Scholar
  7. [7]
    F. Chapoton, S. Fomin and A. Zelevinsky: Polytopal realizations of generalized associahedra, Can. Math. Bull. 45 (2002), 537–566.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    J. A. De Loera, J. Rambau and F. Santos: Triangulations: Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, Vol. 25. Springer-Verlag, 2010.Google Scholar
  9. [9]
    S. Fomin and N. Reading: Root systems and generalized associahedra, in: “Geometric Combinatorics” (E. Miller, V. Reiner, B. Sturmfels, eds.) IAS/Park City Math. Ser., Vol. 13, Amer. Math. Soc., Province, RI, 2007, 63–131.Google Scholar
  10. [10]
    S. Fomin and A. Zelevinsky: Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497–529.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Fomin and A. Zelevinsky: Cluster algebras II: Finite type classification, Invent. Math. 154 (2003), 63–121.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Fomin and A. Zelevinsky: Y-systems and generalized associahedra, Annals of Math. 158 (2003), 977–1018.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky: Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston 1994.zbMATHCrossRefGoogle Scholar
  14. [14]
    I. M. Gelfand, A. V. Zelevinsky and M. M. Kapranov: Newton polytopes of principal A-determinants, Soviet Math. Doklady 40 (1990), 278–281.MathSciNetGoogle Scholar
  15. [15]
    I. M. Gelfand, A. V. Zelevinsky and M. M. Kapranov: Discriminants of polynomials in several variables and triangulations of Newton polyhedra, Leningrad Math. J. 2 (1991), 449–505.MathSciNetGoogle Scholar
  16. [16]
    M. Haiman: Constructing the associahedron, Unpublished manuscript, MIT 1984, Scholar
  17. [17]
    Ch. Hohlweg and C. Lange: Realizations of the associahedron and cyclohedron, Discrete Comput. Geometry 37 (2007), 517–543.zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    Ch. Hohlweg, C. Lange and H. Thomas: Permutahedra and generalized associahedra, Adv. Math. 226 (2011), 608–640.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    D. Huguet and D. Tamari: La structure polyédrale des complexes de parenthésages, Journal of Combinatorics, Information & System Sciences 3 (1978), 69–81.zbMATHMathSciNetGoogle Scholar
  20. [20]
    C. Lange: Minkowski decomposition of associahedra and the computation of Moebius inversion, Discrete Comput. Geometry 50 (2013), 903–939.zbMATHCrossRefGoogle Scholar
  21. [21]
    C. Lange and V. Pilaud: Using spines to revisit a construction of the associahedron, Preprint arXiv:1307.4391v2 (2013), 21 pages.Google Scholar
  22. [22]
    C. W. Lee: The associahedron and triangulations of the n-gon, European J. Combinatorics 10 (1989), 551–560.zbMATHCrossRefGoogle Scholar
  23. [23]
    J.-L. Loday: Realization of the Stasheff polytope, Arch. Math. 83 (2004), 267–278.zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    J.-L. Loday: Dichotomy of the addition of natural numbers, in: Associahedra, Tamari Lattices and Related Structures, Folkert Müller-Hoissen, Jean Pallo and Jim Stasheff (eds.), Progress in Mathematics 299, Birkhäuser, 2012, 65–80.CrossRefGoogle Scholar
  25. [25]
    R. Marsh, M. Reineke and A. Zelevinsky: Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), 4171–4186.zbMATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    T. S. Motzkin: Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products Bull. Amer. Math. Soc. 54 (1948), 352–360.zbMATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    V. Pilaud and F. Santos: The brick polytope of a sorting network, European J. Combin. 33 (2012), 632–662.zbMATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    V. Pilaud and Ch. Stump: Brick polytopes of spherical subword complexes: A new approach to generalized associahedra, Preprint arXiv:1111.3349v2 (2012), 45 pages. Extended abstract in “24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)”, DMTCS Proceedings (2012), 73–84.Google Scholar
  29. [29]
    A. Postnikov: Permutohedra, associahedra and beyond, Int. Math. Research Notices 2009 (2009), 1026–1106.zbMATHMathSciNetGoogle Scholar
  30. [30]
    A. Postnikov, V. Reiner and L. Williams: Faces of generalized permutohedra, Documenta Mathematica 13 (2008), 207–273.zbMATHMathSciNetGoogle Scholar
  31. [31]
    N. Reading: Cambrian lattices, Adv. Math. 205 (2006), 313–353.zbMATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    N. Reading: Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Amer. Math. Soc. 359 (2007), 5931–5958.zbMATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    N. Reading and D. E. Speyer: Cambrian Fans. J. Eur. Math. Soc. (JEMS) 11 (2009), 407–447.zbMATHMathSciNetCrossRefGoogle Scholar
  34. [34]
    N. Reading and D. E. Speyer: Sortable elements in infinite Coxeter groups, Trans. Amer. Math. Soc. 363 (2011), 699–761.zbMATHMathSciNetCrossRefGoogle Scholar
  35. [35]
    G. Rote, F. Santos and I. Streinu: Expansive motions and the polytope of pointed pseudo-triangulations, in: “Discrete and Computational Geometry”, Algorithms and Combinatorics Vol. 25, Springer, Berlin, 2003, pp. 699–736.MathSciNetCrossRefGoogle Scholar
  36. [36]
    F. Santos: Catalan many associahedra, lecture at the “Kolloquium über Kombinatorik (KolKom04)”, Magdeburg, November 2004.Google Scholar
  37. [37]
    S. Shnider and Sh. Sternberg: Quantum groups. From coalgebras to Drinfel’d algebras: A guided tour, Graduate Texts in Math. Physics, II, International Press, Cambridge, MA, 1993.Google Scholar
  38. [38]
    N. J. A. Sloane: The On-Line Encyclopedia of Integer Sequences, Scholar
  39. [39]
    J. D. Stasheff: Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc. 108 (1963), 275–292.zbMATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    J. D. Stasheff: From operads to “physically” inspired theories, in: Operads. Proc. Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemporary Math. 202 (1997), 53–81.MathSciNetCrossRefGoogle Scholar
  41. [41]
    J. D. Stasheff: How I ‘met’ Dov Tamari, in: Associahedra, Tamari Lattices and Related Structures, Folkert Müller-Hoissen, Jean Pallo and Jim Stasheff (eds.), Progress in Mathematics 299, Birkhäuser, 2012, 45–63.CrossRefGoogle Scholar
  42. [42]
    S. Stella: Polyhedral models for generalized associahedra via Coxeter elements, J. Algebraic Combin. 38 (2013), 121–158.zbMATHMathSciNetCrossRefGoogle Scholar
  43. [43]
    D. Tamari: Monoïdes préordonnés et chaînes de Malcev, Doctoral Thesis, Paris 1951, 81 pages.Google Scholar
  44. [44]
    G. M. Ziegler: Lectures on Polytopes, Graduate Texts in Mathematics, Vol. 152. Springer-Verlag, New York, 1995.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Cesar Ceballos
    • 1
  • Francisco Santos
    • 2
  • Günter M. Ziegler
    • 3
  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada
  2. 2.Facultad de CienciasUniversidad de CantabriaSantanderSpain
  3. 3.Inst. MathematicsFU BerlinBerlinGermany

Personalised recommendations