Abstract
We consider extremal problems for subgraphs of pseudorandom graphs. For graphs F and Г the generalized Turán density π F (Г) denotes the relative density of a maximum subgraph of Г, which contains no copy of F. Extending classical Turán type results for odd cycles, we show that π F (Г)=1/2 provided F is an odd cycle and Г is a sufficiently pseudorandom graph.
In particular, for (n,d,λ)-graphs Г, i.e., n-vertex, d-regular graphs with all non-trivial eigenvalues in the interval [−λ,λ], our result holds for odd cycles of length ℓ, provided
Up to the polylog-factor this verifies a conjecture of Krivelevich, Lee, and Sudakov. For triangles the condition is best possible and was proven previously by Sudakov, Szabó, and Vu, who addressed the case when F is a complete graph. A construction of Alon and Kahale (based on an earlier construction of Alon for triangle-free (n,d;λ)-graphs) shows that our assumption on Г is best possible up to the polylog-factor for every odd ℓ≥5.
This is a preview of subscription content, access via your institution.
References
- [1]
N. Alon: Eigenvalues and expanders, Combinatorica 6 (1986), 83–96; Theory of computing (Singer Island, Fla., 1984).
- [2]
N. Alon: Explicit Ramsey graphs and orthonormal labelings, Electron. J. Combin. 1 (1994).
- [3]
N. Alon and N. Kahale: Approximating the independence number via the v-function, Math. Programming, Ser. A 80 (1998), 253–264.
- [4]
N. Alon and V. D. Milman: λ1; isoperimetric inequalities for graphs, and superconcentrators, J. Combin. Theory Ser. B 38 (1985), 73–88.
- [5]
N. Alon and J. H. Spencer: The probabilistic method, third ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., Hoboken, NJ, 2008, With an appendix on the life and work of Paul Erdős.
- [6]
L. Babai, M. Simonovits and J. Spencer: Extremal subgraphs of random graphs, J. Graph Theory 14 (1990), 599–622.
- [7]
B. Bollobás: Extremal graph theory, Dover Publications Inc., Mineola, NY, 2004, Reprint of the 1978 original.
- [8]
F. K. Chung: A spectral Turán theorem, Combin. Probab. Comput. 14 (2005), 755–767.
- [9]
D. Conlon and W. T. Gowers: Combinatorial theorems in sparse random sets, submitted.
- [10]
P. Erdős and M. Simonovits: A limit theorem in graph theory, Studia Sci. Math. Hungar 1 (1966), 51–57.
- [11]
P. Erdös and A. H. Stone: On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.
- [12]
P. E. Haxell, Y. Kohayakawa and T. Łuczak: Turán’s extremal problem in random graphs: forbidding even cycles, J. Combin. Theory Ser. B 64 (1995), 273–287.
- [13]
P. E. Haxell, Y. Kohayakawa and T. Łuczak: Turán’s extremal problem in random graphs: forbidding odd cycles, Combinatorica 16 (1996), 107–122.
- [14]
S. Janson, T. Łuczak and A. Rucinski: Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.
- [15]
Y. Kohayakawa, T. Łuczak and V. Rödl: On K 4-free subgraphs of random graphs, Combinatorica 17 (1997), 173–213.
- [16]
Y. Kohayakawa, V. Rödl, M. Schacht, P. Sissokho and J. Skokan: Turán’s theorem for pseudo-random graphs, J. Combin. Theory Ser. A 114 (2007), 631–657.
- [17]
M. Krivelevich, C. Lee and B. Sudakov: Resilient pancyclicity of random and pseudorandom graphs, SIAM J. Discrete Math. 24 (2010), 1–16.
- [18]
M. Krivelevich and B. Sudakov: Pseudo-random graphs, More sets, graphs and numbers, Bolyai Soc. Math. Stud., vol. 15, Springer, Berlin, 2006.
- [19]
M. Schacht: Extremal results for random discrete structures, submitted.
- [20]
B. Sudakov, T. Szabó and V. H. Vu: A generalization of Turán’s theorem, J. Graph Theory 49 (2005), 187–195.
- [21]
R. M. Tanner: Explicit concentrators from generalized N-gons, SIAM J. Algebraic Discrete Methods 5 (1984), 287–293.
- [22]
A. Thomason: Random graphs, strongly regular graphs and pseudorandom graphs, Surveys in combinatorics 1987 (New Cross, 1987), London Math. Soc. Lecture Note Ser., vol. 123, Cambridge Univ. Press, Cambridge, 1987, 173–195.
- [23]
P. Turán: Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aigner-Horev, E., Hàn, H. & Schacht, M. Extremal results for odd cycles in sparse pseudorandom graphs. Combinatorica 34, 379–406 (2014). https://doi.org/10.1007/s00493-014-2912-y
Received:
Published:
Issue Date:
Mathematics Subject Classification (2000)
- 05C35
- 05C80
- 05D40