Exact solution of the hypergraph Turán problem for k-uniform linear paths


A k-uniform linear path of length ℓ, denoted by ℙ (k) , is a family of k-sets {F 1,...,F such that |F i F i+1|=1 for each i and F i F bj = \(\not 0\) whenever |ij|>1. Given a k-uniform hypergraph H and a positive integer n, the k-uniform hypergraph Turán number of H, denoted by ex k (n, H), is the maximum number of edges in a k-uniform hypergraph \(\mathcal{F}\) on n vertices that does not contain H as a subhypergraph. With an intensive use of the delta-system method, we determine ex k (n, P (k) exactly for all fixed ℓ ≥1, k≥4, and sufficiently large n. We show that

$ex_k (n,\mathbb{P}_{2t + 1}^{(k)} ) = (_{k - 1}^{n - 1} ) + (_{k - 1}^{n - 2} ) + \cdots + (_{k - 1}^{n - t} )$


The only extremal family consists of all the k-sets in [n] that meet some fixed set of t vertices. We also show that

$ex(n,\mathbb{P}_{2t + 2}^{(k)} ) = (_{k - 1}^{n - 1} ) + (_{k - 1}^{n - 2} ) + \cdots + (_{k - 1}^{n - t} ) + (_{k - 2}^{n - t - 2} )$

, and describe the unique extremal family. Stability results on these bounds and some related results are also established.

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Ajtai, J. Komlós, M. Simonovits, E. Szemerédi: The solution of the Edrős-Sós conjecture for large trees, Manuscripts.

  2. [2]

    B. Bollobás: Extremal graph theory, Academic Press, London, 1978.

    Google Scholar 

  3. [3]

    M. Deza, P. Erős, P. Frankl: Intersection properties of systems of finite sets, Proc. London Math. Soc. (3) 36 (1978), 369–384.

    Article  MATH  MathSciNet  Google Scholar 

  4. [4]

    P. Dorbec, S. Gravier, G. Sárközy: Monochromatic Hamiltonian t-tight Bergecycles in hypergraphs, Journal of Graph Theory 59 (2008), 34–44.

    Article  MATH  MathSciNet  Google Scholar 

  5. [5]

    P. Erős, T. Gallai: On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.

    MathSciNet  Google Scholar 

  6. [6]

    P. Erős: A problem on independent r-tuples, Ann. Univ. Sci. Budapest 8 (1965), 93–95.

    Google Scholar 

  7. [7]

    P. Erős, C. Ko, R. Rado: Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313–320.

    Article  MathSciNet  Google Scholar 

  8. [8]

    P. Erős, D. J. Kleitman: On coloring graphs to maximize the portion of multicolored k-edges, J. Combin. Th. 5 (1968), 164–169.

    Article  Google Scholar 

  9. [9]

    P. Frankl: On families of finite sets no two of which intersect in a singleton, Bull. Austral. Math. Soc. 17 (1977), 125–134.

    Article  MATH  MathSciNet  Google Scholar 

  10. [10]

    P. Frankl, Z. Föuredi: Exact solution of some Turán-type problems, J. Combin. Th. Ser. A 45 (1987), 226–262.

    Article  MATH  MathSciNet  Google Scholar 

  11. [11]

    P. Frankl, G. Y. Katona: Extremal k-edge Hamiltonian hypergraphs, Discrete Math. 308 (2008), 1415–1424.

    Article  MATH  MathSciNet  Google Scholar 

  12. [12]

    Z. Föuredi: On finite set-systems whose every intersection is a kernel of a star, Discrete Math. 47 (1983), 129–132.

    Article  MathSciNet  Google Scholar 

  13. [13]

    Z. Föuredi: Turán type problems, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 166, Cambridge Univ. Press, Cambridge, 1991, 253–300.

    MathSciNet  Google Scholar 

  14. [14]

    Z. Föuredi: Linear paths and trees in uniform hypergraphs, 2011.

    Google Scholar 

  15. [15]

    Z. Föuredi, L. Özkahya: Unavoidable subhypergraphs: a-clusters, J. Combin. Th. Ser. A 118 (2011), 2246–2256.

    Article  Google Scholar 

  16. [16]

    E. Győri, G.Y. Katona, N. Lemons: Hypergraph extensions of the Erős-Gallai theorem, Electronic Notes in Disc. Math. 36 (2010), 655–662.

    Article  Google Scholar 

  17. [17]

    T. Jiang, O. Pikhurko, Z. Yilma: Set-systems without a strong simplex, SIAM J. Discrete Math. 24 (2010), 1038–1045.

    Article  MATH  MathSciNet  Google Scholar 

  18. [18]

    T. Jiang, R. Siever: Hypergraph Turán numbers of loose paths, manuscript.

  19. [19]

    G. Y. Katona, H. A. Kierstead: Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999), 205–212.

    Article  MATH  MathSciNet  Google Scholar 

  20. [20]

    P. Keevash: Hypergraph Turan problems, Surveys in Combinatorics 2011, to appear.

    Google Scholar 

  21. [21]

    P. Keevash, D. Mubayi: Stability theorems for cancellative hypergraphs, J. Combin. Th. Ser B 92 (2004), 163–175.

    Article  MATH  MathSciNet  Google Scholar 

  22. [22]

    P. Keevash, D. Mubayi, R. M. Wilson: Set systems with no singleton intersection, SIAM J. Discrete Math. 20 (2006), 1031–1041.

    Article  MATH  MathSciNet  Google Scholar 

  23. [23]

    D. Köuhn, D. Osthus: Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, J. Combin. Theory Ser. B 96 (2006), 767–821.

    Article  MathSciNet  Google Scholar 

  24. [24]

    D. Mubayi: A hypergraph extension of Turán’s theorem, J. Combin. Th. Ser. B 96 (2006), 122–134.

    Article  MATH  MathSciNet  Google Scholar 

  25. [25]

    D. Mubayi, J. Verstraöete: Minimal paths and cycles in set systems, European J. Combin. 28 (2007), 1681–1693.

    Article  MATH  MathSciNet  Google Scholar 

  26. [26]

    O. Pikhurko: Exact computation of the hypergraph Turán function for expanded complete 2-graph, accepted by J. Combin. Th. Ser. B, publication suspended for an indefinite time, see http://www.math.cmu.edu/pikhurko/Copyright.html.

  27. [27]

    V. Rödl: On a packing and covering problem, European J. of Combinatorics 6 (1985), 69–78.

    Article  MATH  Google Scholar 

  28. [28]

    V. Rödl, A. Ruciński, E. Szemerédi: An approximate Dirac-type theorem for k-uniform hypergaphs, Combinatorica 28 (2008), 229–260.

    Article  MATH  MathSciNet  Google Scholar 

  29. [29]

    A. F. Sidorenko: Asymptotic solution for a new class of forbidden r-graphs, Combinatorica 9 (1989), 207–215.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Zoltán Füredi.

Additional information

Research supported in part by the Hungarian National Science Foundation OTKA, by the National Science Foundation under grant NFS DMS 09-01276, and by a European Research Council Advanced Investigators Grant 267195.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Füredi, Z., Jiang, T. & Seiver, R. Exact solution of the hypergraph Turán problem for k-uniform linear paths. Combinatorica 34, 299–322 (2014). https://doi.org/10.1007/s00493-014-2838-4

Download citation

Mathematics Subject Classification (2010)

  • 05D05
  • 05C65
  • 05C35