, Volume 34, Issue 3, pp 279–298 | Cite as

A minimum degree condition forcing complete graph immersion

  • Matt DevosEmail author
  • Zdeněk Dvořák
  • Jacob Fox
  • Jessica McDonald
  • Bojan Mohar
  • Diego Scheide


An immersion of a graph H into a graph G is a one-to-one mapping f: V (H) → V (G) and a collection of edge-disjoint paths in G, one for each edge of H, such that the path P uv corresponding to edge uv has endpoints f(u) and f(v). The immersion is strong if the paths P uv are internally disjoint from f(V (H)). It is proved that for every positive integer Ht, every simple graph of minimum degree at least 200t contains a strong immersion of the complete graph K t . For dense graphs one can say even more. If the graph has order n and has 2cn 2 edges, then there is a strong immersion of the complete graph on at least c 2 n vertices in G in which each path P uv is of length 2. As an application of these results, we resolve a problem raised by Paul Seymour by proving that the line graph of every simple graph with average degree d has a clique minor of order at least cd 3/2, where c>0 is an absolute constant.

For small values of t, 1≤t≤7, every simple graph of minimum degree at least t−1 contains an immersion of K t (Lescure and Meyniel [13], DeVos et al. [6]). We provide a general class of examples showing that this does not hold when t is large.

Mathematics Subject Classification (2000)

05C35 05C83 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. N. Abu-Khzam and M. A. Langston: Graph coloring and the immersion order, preprint.Google Scholar
  2. [2]
    N. Alon, M. Krivelevich, B. Sudakov: Turán numbers of bipartite graphs and related Ramsey-type questions, Combin. Probab. Comput. 12 (2003), 477–494.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    B. Bollobás, A. Thomason: Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs, European J. Combin. 19 (1998), 883–887.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    H. D. Booth, R. Govindan, M. A. Langston and S. Ramachandramurthis: Sequential and parallel algorithms for K4-immersion testing, J. Algorithms 30 (1999), 344–378.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    P. A. Catlin: A bound on the chromatic number of a graph, Discrete Math. 22 (1978), 81–83.CrossRefMathSciNetGoogle Scholar
  6. [6]
    M. DeVos, K. Kawarabayashi, B. Mohar and H. Okamura: Immersing small complete graphs, Ars Math. Contemp. 3 (2010), 139–146.zbMATHMathSciNetGoogle Scholar
  7. [7]
    P. Erdős: Problems and results in graph theory and combinatorial analysis, in: Graph Theory and Related Topics (Proc. Conf. Waterloo, 1977), Academic Press, New York, 1979, 153–163.Google Scholar
  8. [8]
    M. R. Fellows and M. A. Langston: Nonconstructive tools for proving polynomial-time decidability, J. ACM 35 (1998), 727–738.CrossRefMathSciNetGoogle Scholar
  9. [9]
    J. Fox and B. Sudakov: Dependent random choice, Random Structures and Algorithms 38 (2011), 68–99.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    H. Hadwiger: Über eine Klassi kation der Streckenkomplexe, Vierteljahrsschr. Naturforsch. Ges. Zürich 88 (1943), 133–142.MathSciNetGoogle Scholar
  11. [11]
    J. Komlós, E. Szemerédi: Topological cliques in graphs. II, Combin. Probab. Comput. 5 (1996), 79–90.Google Scholar
  12. [12]
    A. Kostochka: Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307–316.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    F. Lescure, H. Meyniel: On a problem upon configurations contained in graphs with given chromatic number, Graph theory in memory of G. A. Dirac (Sandbjerg, 1985), 325–331, Ann. Discrete Math. 41, North-Holland, Amsterdam, 1989.Google Scholar
  14. [14]
    L. Lovász, M. D. Plummer: Matching Theory, AMS Chelsea Publishing, Providence, RI, 2009.zbMATHGoogle Scholar
  15. [15]
    C. St. J. A. Nash-Williams: Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445–450.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    N. Robertson and P. D. Seymour: Graph minors. XX. Wagner’s conjecture, J. Combin. Theory Ser. B 92 (2004), 325–357.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    N. Robertson and P. D. Seymour: Graph Minors XXIII, Nash-Williams’ immersion conjecture, J. Combin. Theory Ser. B 100 (2010), 181–205.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    N. Robertson, P. D. Seymour and R. Thomas: Hadwiger’s conjecture for K 6-free graphs, Combinatorica 13 (1993), 279–361.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    P. Seymour: personal communication.Google Scholar
  20. [20]
    A. Thomason: The extremal function for complete minors, J. Combin. Theory Ser. B 81 (2001), 318–338.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    W. T. Tutte: On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961), 221–230.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matt Devos
    • 1
    Email author
  • Zdeněk Dvořák
    • 2
  • Jacob Fox
    • 3
  • Jessica McDonald
    • 4
  • Bojan Mohar
    • 1
  • Diego Scheide
    • 1
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyUSA
  2. 2.Computer Science InstituteCharles UniversityPragueCzech Republic
  3. 3.Department of MathematicsMITCambridgeUSA
  4. 4.Department of Mathematics and StatisticsAuburn UniversityAuburnUSA

Personalised recommendations