Half-integral packing of odd cycles through prescribed vertices

Abstract

The well-known theorem of Erdős-Pósa says that a graph G has either k disjoint cycles or a vertex set X of order at most f(k) for some function f such that G\X is a forest. Starting with this result, there are many results concerning packing and covering cycles in graph theory and combinatorial optimization.

In this paper, we discuss packing disjoint S-cycles, i.e., cycles that are required to go through a set S of vertices. For this problem, Kakimura-Kawarabayashi-Marx (2011) and Pontecorvi-Wollan (2010) recently showed the Erdős-Pósa-type result holds. We further try to generalize this result to packing S-cycles of odd length. In contrast to packing S-cycles, the Erdős-Pósa-type result does not hold for packing odd S-cycles. We then relax packing odd S-cycles to half-integral packing, and show the Erdős-Pósa-type result for the half-integral packing of odd S-cycles, which is a generalization of Reed (1999) when S=V. That is, we show that given an integer k and a vertex set S, a graph G has either 2k odd S-cycles so that each vertex is in at most two of these cycles, or a vertex set X of order at most f(k) (for some function f) such that G\X has no odd S-cycle.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    A. Caprara, A. Panconesi and R. Rizzi: Packing cycles in undirected graphs, Journal of Algorithms 48 (2003), 239–256.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    M. Cygan, M. Pilipczuk, M. Pilipczuk and J. O. Wojtaszczyk: Subset feedback vertex set is fixed parameter tractable, SIAM Journal on Discrete Mathematics, to appear.

  3. [3]

    R. Diestel, K. Yu. Gorbunov, T. R. Jensen and C. Thomassen: Highly connected sets and the excluded grid theorem, Journal of Combinatorial Theory, Ser. B 75 (1999), 61–73.

    MathSciNet  Article  Google Scholar 

  4. [4]

    I. Dejter and V. Neumann-Lara: Unboundedness for generalized odd cycle transversability and a Gallai conjecture, the Fourth Caribbean Conference on Computing, Puerto Rico, 1985.

    Google Scholar 

  5. [5]

    P. Erdős and L. Pósa: On the independent circuits contained in a graph, Canadian Journal of Mathematics 17 (1965), 347–352.

    Article  Google Scholar 

  6. [6]

    P. Erdős and G. Szekeres: A combinatorial problem in geometry, Compositio Mathematica 2 (1935), 463–470.

    MathSciNet  Google Scholar 

  7. [7]

    G. Even, S. Naor and L. Zosin: An 8-approximation algorithm for the subset feedback vertex set problem SIAM Journal on Computing 30 (2000), 1231–1252. Conference version in Proc. the 37th Annual Symposium on Foundations of Computer Science (FOCS), 1996, 310–319.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    P. Festa, P. M. Pardalos and M. G. C. Resende: Feedback set problems, Hand-book of combinatorial optimization, Supplement Vol. A, Kluwer Acad. Publ., Dordrecht, 1999, 209–258.

    Google Scholar 

  9. [9]

    J. Geelen, B. Gerards, B. Reed, P. Seymour and A. Vetta: On the odd-minor variant of Hadwiger’s conjecture, Journal of Combinatorial Theory, Ser. B 99 (2009), 20–29.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    N. Kakimura and K. Kawarabayashi: Packing cycles through prescribed vertices under modularity constraints, Advances in Applied Mathematics 49 (2012), 97–110.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    N. Kakimura, K. Kawarabayashi, Y. Kobayashi: Erdős-Pósa property and its algorithmic applications — parity constraints, subset feedback set, and subset packing, Proc. the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), 1726–1736, SIAM, Philadelphia, PA, 2012.

    Google Scholar 

  12. [12]

    N. Kakimura, K. Kawarabayashi and D. Marx: Packing cycles through prescribed vertices, Journal of Combinatorial Theory, Ser. B 101 (2011), 378–381.

    MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    K. Kawarabayashi and Y. Kobayashi: Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing problem, Journal of Combinatorial Theory, Ser. B 102 (2012), 1020–1034.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    M. Krivelevich, Z. Nutov, M. Salavatipour, J. Verstraete and R. Yuster: Approximation algorithms and hardness results for cycle packing problems, ACM Transactions on Algorithms 3 (2007), Article 48.

    Google Scholar 

  15. [15]

    M. Pontecorvi and P. Wollan: Disjoint cycles intersecting a set of vertices, Journal of Combinatorial Theory, Ser. B, to appear.

  16. [16]

    B. Reed: Mangoes and blueberries, Combinatorica 19 (1999), 267–296.

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    B. Reed: Tree width and tangles: A new connectivity measure and some applications, in: Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 241, Cambridge University Press, Cambridge, 1997, 87–162.

    Google Scholar 

  18. [18]

    N. Robertson and P. D. Seymour: Graph minors. XIII. The disjoint paths problem, Journal of Combinatorial Theory, Ser. B 63 (1995), 65–110.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    N. Robertson, P. D. Seymour and R. Thomas: Quickly excluding a planar graph, Journal of Combinatorial Theory, Ser. B 62 (1994), 323–348.

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    P. D. Seymour: Disjoint paths in graphs, Discrete Mathematics 29 (1980), 293–309.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    M. Simonovits: A new proof and generalizations of a theorem of Erdős and Pósa on graphs without k+1 independent circuits, Acta Mathematica Academiae Scientiarum Hungaricae 18 (1967), 191–206.

    MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    C. Thomassen: 2-linked graphs, European Journal of Combinatorics 1 (1980), 371–378.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    C. Thomassen: On the presence of disjoint subgraphs of a specified type, Journal of Graph Theory 12 (1988), 101–111.

    MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    P. Wollan: Packing cycles with modularity constraints, Combinatorica 31 (2011), 95–126.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naonori Kakimura.

Additional information

A preliminary version of this paper appears as a part of “Erdős-Pósa property and its algorithmic applications — parity constraints, subset feedback set, and subset packing”[11] in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012).

Partly supported by Grant-in-Aid for Scientific Research and JST, ERATO, Kawarabayashi Large Graph Project.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kakimura, N., Kawarabayashi, KI. Half-integral packing of odd cycles through prescribed vertices. Combinatorica 33, 549–572 (2013). https://doi.org/10.1007/s00493-013-2865-6

Download citation

Mathematics Subject Classification (2000)

  • 68R10
  • 05C38
  • 05C70