Abstract
Let F be a family of graphs. A graph is F-free if it contains no copy of a graph in F as a subgraph. A cornerstone of extremal graph theory is the study of the Turán number ex(n,F), the maximum number of edges in an F-free graph on n vertices. Define the Zarankiewicz number z(n,F) to be the maximum number of edges in an F-free bipartite graph on n vertices. Let C k denote a cycle of length k, and let C k denote the set of cycles C ℓ, where 3≤ℓ≤k and ℓ and k have the same parity. Erdős and Simonovits conjectured that for any family F consisting of bipartite graphs there exists an odd integer k such that ex(n,F ∪ C k ) ∼ z(n,F) — here we write f(n) ∼ g(n) for functions f,g: ℕ → ℝ if lim n→∞ f(n)/g(n)=1. They proved this when F ={C 4} by showing that ex(n,{C 4;C 5})∼z(n,C 4). In this paper, we extend this result by showing that if ℓ∈{2,3,5} and k>2ℓ is odd, then ex(n,C 2ℓ ∪{C k }) ∼ z(n,C 2ℓ ). Furthermore, if k>2ℓ+2 is odd, then for infinitely many n we show that the extremal C 2ℓ ∪{C k }-free graphs are bipartite incidence graphs of generalized polygons. We observe that this exact result does not hold for any odd k<2ℓ, and furthermore the asymptotic result does not hold when (ℓ,k) is (3, 3), (5, 3) or (5, 5). Our proofs make use of pseudorandomness properties of nearly extremal graphs that are of independent interest.
This is a preview of subscription content, access via your institution.
References
- [1]
P. Allen: Dense H-free graphs are almost (χ(H)−1)-partite, Electronic Journal of Combinatorics 17 (2010), R21.
- [2]
P. Allen, J. Böttcher, S. Griffiths, Y. Kohayakawa and R. Morris: The chromatic thresholds of graphs, arXiv:1108.1746.
- [3]
N. Alon, S. Hoory and N. Linial: The Moore bound for irregular graphs, Graphs Combin. 18 (2002), 53–57.
- [4]
N. Alon and J. Spencer: The Probabilistic Method, 3rd edition, Wiley, New York, 2008.
- [5]
N. Alon and B. Sudakov: H-free graphs of large minimum degree, Electron. J. Combin. 13 (2006), Research Paper 19, 9.
- [6]
B. Andrásfai, P. Erdős and V. Sós: On the connection between chromatic number, maximal clique and minimal degree of a graph, Disc. Math. 8 (1974), 205–218.
- [7]
C.T. Benson: Minimal regular graphs of girths eight and twelve, Canad. J. Math. 18 (1966), 1091–1094.
- [8]
G. R. Blakley and P. Roy: A Hölder type inequality for symmetric matrices with nonnegative entries, Proc. Amer. Math. Soc. 16 (1965), 1244–1245.
- [9]
J. Bondy and M. Simonovits: Cycles of even length in graphs, J. Combin. Theory Ser. B 16 (1974), 75–105.
- [10]
P. Erdős: On sequences of integers no one of which divides the product of two others and on some related problems, Mitt. Forsch.-Inst. Math. Mech. Univ. Tomsk 2 (1938), 74–82.
- [11]
P. Erdős, P: Some recent progress on extremal problems in graph theory, Congr. Numer. 14 (1975), 3–14.
- [12]
P. Erdős and A. Rényi: On a problem in the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci. 7A (1962), 623–641.
- [13]
P. Erdős and M. Simonovits: Compactness results in extremal graph theory, Combinatorica 2 (1982), 275–288.
- [14]
P. Erdős and M. Simonovits: A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966), 51–57.
- [15]
P. Erdős and A. H. Stone: On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.
- [16]
W. Feit and G. Higman: The nonexistence of certain generalized polygons, J. Algebra 1 (1964), 114–131.
- [17]
Z. Füredi: Quadrilateral-free graphs with maximum number of edges, unpublished manuscript (1988).
- [18]
Z. Füredi: On the number of edges of quadrilateral-free graphs, J. Combin. Theory Ser. B 68 (1996), 1–6.
- [19]
Z. Füredi: New asymptotics for bipartite Turán numbers, J. Combin. Theory Ser. A 75 (1996), 141–144.
- [20]
Z. Füredi, A. Naor and J. Verstraëte: On the Turán number for the hexagon, Adv. Math. 203 (2006), 476–496.
- [21]
W. Goddard and J. Lyle: Dense graphs with small clique number, J. Graph Theory 66 (2011), 319–331.
- [22]
C. D. Godsil and M. W. Newman: Eigenvalue bounds for independent sets, J. Combin. Theory Ser. B 98 (2008), 721–734.
- [23]
S. Hoory: The size of bipartite graphs with a given girth, J. Combin. Theory Ser. B 86 (2002), 215–220.
- [24]
T. Kővári, V. Sós and P. Turán: On a problem of K. Zarankiewicz, Colloquium Math. 3 (1954), 50–57.
- [25]
M. Krivelevich and B. Sudakov: Pseudo-random graphs, in: More Sets, Graphs and Numbers, Bolyai Soc. Math. Studies 15, Springer (2006), 199–262.
- [26]
T. Lam and J. Verstraëte: A note on graphs without short even cycles, Electron. J. Combin. 12 (2005), N5.
- [27]
F. Lazebnik, V. A. Ustimenko and A. J. Woldar: A new series of dense graphs of high girth, Bulletin of the AMS 32 (1995), 73–79.
- [28]
F. Lazebnik, V.A. Ustimenko and A.J. Woldar: Polarities and 2k-cycle-free graphs, Disc. Math. 197/198 (1999), 503–513.
- [29]
A. Lubotzky, R. Phillips and P. Sarnak: Ramanujan graphs, Combinatorica 8 (1988), 261–277.
- [30]
T. Luczak and S. Thomassé: Coloring dense graphs via VC-dimension, preprint.
- [31]
G. Margulis: Explicit constructions of graphs without short cycles and low density codes, Combinatorica 2 (1982), 71–78.
- [32]
A. Naor and J. Verstraëte: A note on bipartite graphs without 2k-cycles, Combin. Probab. Comput. 14 (2005), 845–849.
- [33]
T. D. Parsons: Graphs from projective planes, Aequationes Math. 14 (1976), 167–189.
- [34]
I. Reiman: Über ein Problem von K. Zarankiewicz, Acta Math. Acad. Sci. Hungar. 9 (1958), 269–278.
- [35]
A. Sidorenko: Cycles in graphs and functional inequalities, Mat. Zametki 46 (1989), 72–79; translation in Math. Notes 46 (1989), 877–882.
- [36]
R. Singleton: On minimal graphs of maximum even girth, J. Combin. Theory 1 (1966), 306–332.
- [37]
C. Thomassen: On the chromatic number of pentagon-free graphs of large minimum degree, Combinatorica 27 (2007), 241–243.
- [38]
J. Tits: Sur la trialité et certains groupes qui s’en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959), 13–60.
- [39]
P. Turán: Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452.
- [40]
J. Verstraëte: On arithmetic progressions of cycle lengths in graphs, Combin. Probab. Comput. 9 (2000), 369–373.
Author information
Affiliations
Corresponding author
Additional information
Research supported in part by ERC grant 239696 and EPSRC grant EP/G056730/1.
Research supported in part by NSF grant DMS-1101185 and by USA-Israeli BSF grant.
Research supported in part by an Alfred P. Sloan Research Fellowship and NSF Grant DMS-0800704.
Rights and permissions
About this article
Cite this article
Keevash, P., Sudakov, B. & Verstraëte, J. On a conjecture of Erdős and Simonovits: Even cycles. Combinatorica 33, 699–732 (2013). https://doi.org/10.1007/s00493-013-2863-8
Received:
Published:
Issue Date:
Mathematics Subject Classification (2000)
- 05C35
- 05C38
- 05C50
- 05D40