# Sorting under partial information (without the ellipsoid algorithm)

## Abstract

We revisit the well-known problem of sorting under partial information: sort a finite set given the outcomes of comparisons between some pairs of elements. The input is a partially ordered set P, and solving the problem amounts to discovering an unknown linear extension of P, using pairwise comparisons. The information-theoretic lower bound on the number of comparisons needed in the worst case is log e(P), the binary logarithm of the number of linear extensions of P. In a breakthrough paper, Jeff Kahn and Jeong Han Kim (J. Comput. System Sci. 51 (3), 390–399, 1995) showed that there exists a polynomial-time algorithm for the problem achieving this bound up to a constant factor. Their algorithm invokes the ellipsoid algorithm at each iteration for determining the next comparison, making it impractical.

We develop efficient algorithms for sorting under partial information. Like Kahn and Kim, our approach relies on graph entropy. However, our algorithms differ in essential ways from theirs. Rather than resorting to convex programming for computing the entropy, we approximate the entropy, or make sure it is computed only once, in a restricted class of graphs, permitting the use of a simpler algorithm. Specifically, we present:

1. 1.

an O(n 2) algorithm performing O(logn·log e(P)) comparisons

2. 2.

an O(n 2:5) algorithm performing at most (1+ɛ) log e(P)+O ɛ (n) comparisons

3. 3.

an O(n 2:5) algorithm performing O(log e(P)) comparisons.

All our algorithms can be implemented in such a way that their computational bottleneck is confined in a preprocessing phase, while the sorting phase is completed in O(q)+O(n) time, where q denotes the number of comparisons performed.

This is a preview of subscription content, access via your institution.

## References

1. [1]

S. Boyd and L. Vandenberghe: Convex optimization, Cambridge University Press, Cambridge, 2004.

2. [2]

G. Brightwell and P. Tetali: The number of linear extensions of the boolean lattice. Order 20 (2003), 333–345.

3. [3]

G. R. Brightwell: Balanced pairs in partial orders, Discrete Mathematics 201 (1999), 25–52.

4. [4]

G. R. Brightwell, S. Felsner and W. T. Trotter: Balancing pairs and the cross product conjecture, Order 2 (1995), 327–349.

5. [5]

G. R. Brightwell and P. Winkler: Counting linear extensions, Order 8 (1991), 225–242.

6. [6]

J. Cardinal, S. Fiorini and G. Joret: Minimum entropy coloring, J. Comb. Opt. 16 (2008), 361–377.

7. [7]

J. Cardinal, S. Fiorini, G. Joret, R. M. Jungers and J. I. Munro: An efficient algorithm for partial order production, SIAM J. Comput. 39 (2010), 2927–2940.

8. [8]

J. Cardinal, S. Fiorini, G. Joret, R. M. Jungers and J. I. Munro: Sorting under partial information (without the ellipsoid algorithm), In: STOC’ 10: Proceedings of the 42nd ACM symposium on Theory of computing, 359–368, New York, NY, USA, 2010.

9. [9]

T. M. Cover and J. A. Thomas: Elements of Information Theory, 2nd Edition, Wiley, 2006.

10. [10]

I. Csiszár, J. Körner, L. Lovász, K. Marton and G. Simonyi: Entropy splitting for antiblocking corners and perfect graphs, Combinatorica 10 (1990), 27–40.

11. [11]

C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld and E. Verbin: Sorting and selection in posets, In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), 392–401, 2009.

12. [12]

W. D. Frazer and B. T. Bennett: Bounds on optimal merge performance, and a strategy for optimality, J. ACM 19 (1972), 641–648.

13. [13]

M. L. Fredman: How good is the information theory bound in sorting? Theor. Comput. Sci. 1 (1976), 355–361.

14. [14]

F. Glover: Maximum matchings in a convex bipartite graph, Naval Research Logistics Quarterly 4 (1967), 313–316.

15. [15]

M. C. Golumbic: Algorithmic Graph Theory and Perfect Graphs, 2nd edition, Annals of Discrete Mathematics, Elsevier, 2004.

16. [16]

M. Huber: Fast perfect sampling from linear extensions, Discrete Mathematics 306 (2006), 420–428.

17. [17]

F. K. Hwang and S. Lin: A simple algorithm for merging two disjoint linearly-ordered sets. SIAM J. Comput. 1 (1972), 31–39.

18. [18]

J. Kahn and J. H. Kim: Entropy and sorting, J. Comput. Syst. Sci. 51 (1995), 390–399.

19. [19]

J. Kahn and N. Linial: Balancing extensions via Brunn-Minkowski, Combinatorica 11 (1991), 363–368.

20. [20]

J. Kahn and M. E. Saks: Balancing poset extensions, Order 1 (1984), 113–126.

21. [21]

J. Körner: Coding of an information source having ambiguous alphabet and the entropy of graphs, In: Transactions of the 6th Prague Conference on Information Theory, 411–425, 1973.

22. [22]

J. Körner: Fredman-Komlós bounds and information theory, SIAM J. Algebraic Discrete Methods 7 (1986), 560–570.

23. [23]

J. Körner and K. Marton: Graphs that split entropies, SIAM J. Discrete Math. 1 (1998), 71–79.

24. [24]

N. Linial: The information-theoretic bound is good for merging, SIAM J. Comput. 13 (1984), 795–801.

25. [25]

L. Lovász: Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972), 253–267.

26. [26]

G. Simonyi: Graph entropy: a survey, In: Combinatorial optimization (New Brunswick, NJ, 1992–1993), volume 20 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 399–441. Amer. Math. Soc., Providence, RI, 1995.

27. [27]

R. P. Stanley: Two poset polytopes, Discrete Comput. Geom. 1 (1986), 9–23.

28. [28]

A. C.-C. Yao: Graph entropy and quantum sorting problems, In: STOC’04: 36th Annual ACM Symposium on Theory of Computing, 112–117, 2004.

## Author information

Authors

### Corresponding author

Correspondence to Jean Cardinal.

This work was supported by the Actions de Recherche Concertées”(ARC) fund of the “Communauté française de Belgique”, NSERC of Canada, and the Canada Research Chairs Programme. G.J. and R.J. are Postdoctoral Researchers of the “Fonds National de la Recherche Scientifique”(F.R.S.-FNRS). A preliminary version of the work appeared in [8].

## Rights and permissions

Reprints and Permissions

Cardinal, J., Fiorini, S., Joret, G. et al. Sorting under partial information (without the ellipsoid algorithm). Combinatorica 33, 655–697 (2013). https://doi.org/10.1007/s00493-013-2821-5