Diameters of random circulant graphs

Abstract

The diameter of a graph measures the maximal distance between any pair of vertices. The diameters of many small-world networks, as well as a variety of other random graph models, grow logarithmically in the number of nodes. In contrast, the worst connected networks are cycles whose diameters increase linearly in the number of nodes. In the present study we consider an intermediate class of examples: Cayley graphs of cyclic groups, also known as circulant graphs or multi-loop networks. We show that the diameter of a random circulant 2k-regular graph with n vertices scales as n 1/k, and establish a limit theorem for the distribution of their diameters. We obtain analogous results for the distribution of the average distance and higher moments.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    I. M. Aliev and P. M. Gruber: An optimal lower bound for the Frobenius problem, J. Number Theory 123 (2007), 71–79.

    Article  MATH  MathSciNet  Google Scholar 

  2. [2]

    G. Amir and O. Gurel-Gurevich: The diameter of a random Cayley graph of ℤq, Groups Complex. Cryptol. 2 (2010), 59–65.

    Article  MATH  MathSciNet  Google Scholar 

  3. [3]

    D. Beihoffer, J. Hendry, A. Nijenhuis and S. Wagon: Faster algorithms for Frobenius numbers, Electron. J. Combin. 12 (2005), Research Paper 27, 38.

  4. [4]

    F. P. Boca, C. Cobeli and A. Zaharescu: Distribution of lattice points visible from the origin, Comm. Math. Phys. 213 (2000), 433–470.

    Article  MATH  MathSciNet  Google Scholar 

  5. [5]

    F. P. Boca, R. N. Gologan and A. Zaharescu: The statistics of the trajectory of a certain billiard in a at two-torus, Comm. Math. Phys. 240 (2003), 53–73.

    Article  MATH  MathSciNet  Google Scholar 

  6. [6]

    B. Bollobás: The diameter of random graphs, Trans. Amer. Math. Soc. 267 (1981), 41–52.

    Article  MATH  MathSciNet  Google Scholar 

  7. [7]

    B. Bollobás and W. Fernandez de la Vega: The diameter of random regular graphs, Combinatorica 2 (1982), 125–134.

    Article  MATH  MathSciNet  Google Scholar 

  8. [8]

    B. Bollobás and F. R. K. Chung: The diameter of a cycle plus a random matching, SIAM J. Discrete Math. 1 (1988), 328–333.

    Article  MATH  MathSciNet  Google Scholar 

  9. [9]

    B. Bollobás and O. Riordan: The diameter of a scale-free random graph, Combinatorica 24 (2004), 5–34.

    Article  MATH  MathSciNet  Google Scholar 

  10. [10]

    A. Brauer and J. E. Shockley: On a problem of Frobenius, J. Reine Angew. Math. 211 (1962), 215–220.

    MATH  MathSciNet  Google Scholar 

  11. [11]

    J.-Y. Cai, G. Havas, B. Mans, A. Nerurkar, J.-P. Seifert and I. Shparlinski: On routing in circulant graphs. In: T. Asano et al. (Eds.) COCOON’99, LNCS 1627 (1999), 360–369.

    Google Scholar 

  12. [12]

    F. Chung and L. Lu: The diameter of sparse random graphs, Adv. in Appl. Math. 26 (2001), 257–279.

    Article  MATH  MathSciNet  Google Scholar 

  13. [13]

    S. I. R. Costa, J. E. Strapasson, M. M. S. Alves and T. B. Carlos: Circulant graphs and tessellations on at tori, Linear Algebra Appl. 432 (2010), 369–382.

    Article  MATH  MathSciNet  Google Scholar 

  14. [14]

    H. S. M. Coxeter: Regular polytopes, third edition, Dover Publications Inc., New York, 1973.

    Google Scholar 

  15. [15]

    J. Ding, J.H. Kim, E. Lubetzky and Y. Peres: Diameters in supercritical random graphs via first passage percolation, Combin. Probab. Comput. 19 (2010), 729–751.

    Article  MATH  MathSciNet  Google Scholar 

  16. [16]

    R. Dougherty and V. Faber: The degree-diameter problem for several varieties of Cayley graphs. I. The abelian case, SIAM J. Discrete Math. 17 (2004), 478–519.

    Article  MATH  MathSciNet  Google Scholar 

  17. [17]

    M. Dutour Sikirić, A. Schürmann and F. Vallentin: A generalization of Voronoi’s reduction theory and its applications, Duke Math. J. 142 (2008), 127–164.

    MATH  MathSciNet  Google Scholar 

  18. [18]

    D. Fernholz and V. Ramachandran: The diameter of sparse random graphs, Random Structures Algorithms 31 (2007) 482–516.

    Article  MATH  MathSciNet  Google Scholar 

  19. [19]

    A. Ganesh and F. Xue: On the connectivity and diameter of small-world networks, Adv. in Appl. Probab. 39 (2007), 853–863.

    Article  MATH  MathSciNet  Google Scholar 

  20. [20]

    P. Gritzmann: Lattice covering of space with symmetric convex bodies, Mathematika 32 (1985), 311–315.

    Article  MATH  MathSciNet  Google Scholar 

  21. [21]

    P. M. Gruber and C. G. Lekkerkerker: Geometry of numbers, North-Holland, Amsterdam, 1987.

    Google Scholar 

  22. [22]

    A. E. Ingham: The Distribution of Prime Numbers, Cambridge Mathematical Library, 1932.

    Google Scholar 

  23. [23]

    S. Janson: Random cutting and records in deterministic and random trees, Random Structures Algorithms 29 (2006), 139–179.

    Article  MATH  MathSciNet  Google Scholar 

  24. [24]

    R. Kannan: Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (1992) 161–177.

    Article  MATH  MathSciNet  Google Scholar 

  25. [25]

    O. Kallenberg: Foundations of modern probability, Probability and its Applications (New York), Springer-Verlag, 1997.

    Google Scholar 

  26. [26]

    H. Li: Effective limit distribution of the Frobenius numbers, arXiv:1101.3021.

  27. [27]

    L. Lu: The diameter of random massive graphs, Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (Washington, DC, 2001), 912–921, SIAM, Philadelphia, PA, 2001.

    Google Scholar 

  28. [28]

    J. Marklof: The asymptotic distribution of Frobenius numbers, Invent. Math. 181 (2010), 179–207.

    Article  MATH  MathSciNet  Google Scholar 

  29. [29]

    J. Marklof and A. Strömbergsson: Kinetic transport in the two-dimensional periodic Lorentz gas, Nonlinearity 21 (2008), 1413–1422.

    Article  MATH  MathSciNet  Google Scholar 

  30. [30]

    J. Marklof and A. Strömbergsson: The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, Annals of Math. 172 (2010), 1949–2033.

    Article  MATH  Google Scholar 

  31. [31]

    A. Nachmias and Y. Peres: Critical random graphs: diameter and mixing time, Ann. Probab. 36 (2008), 1267–1286.

    Article  MATH  MathSciNet  Google Scholar 

  32. [32]

    A. Nijenhuis: A minimal-path algorithm for the όney changing problem”, Amer. Math. Monthly 86 (1979), 832–835.

    Article  MATH  MathSciNet  Google Scholar 

  33. [33]

    O. Riordan and N. Wormald: The diameter of sparse random graphs, Combin. Probab. Comput. 19 (2010), 835–926.

    Article  MATH  MathSciNet  Google Scholar 

  34. [34]

    C. A. Rogers: Lattice coverings of space, Mathematika 6 (1959), 33–39.

    Article  MATH  MathSciNet  Google Scholar 

  35. [35]

    Ö. Rödseth: Weighted multi-connected loop networks, Discrete Math. 148 (1996), 161–173.

    Article  MATH  MathSciNet  Google Scholar 

  36. [36]

    S. S. Ryshkov and E. Baranovskii: C-types of n-dimensional lattices and 5-dimensional primitive parallelohedra (with application to the theory of coverings), Proceedings of the Steklov Institute of Mathematics 137 (1976).

  37. [37]

    A. Strömbergsson and A. Venkatesh: Small solutions to linear congruences and Hecke equidistribution, Acta Arithmetica 118 (2005), 41–78.

    Article  MATH  MathSciNet  Google Scholar 

  38. [38]

    A. Strömbergsson: On the limit distribution of Frobenius numbers, Acta Arithmetica 152 (2012), 81–107.

    Article  MATH  MathSciNet  Google Scholar 

  39. [39]

    A. V. Ustinov: On the distribution of Frobenius numbers with three arguments, Izv. Math. 74 (2010), 1023–1049.

    Article  MATH  MathSciNet  Google Scholar 

  40. [40]

    F. Vallentin: Sphere coverings, lattices, and tilings, Phd. Thesis, Technische Universität München, 2003.

    Google Scholar 

  41. [41]

    J. Zerovnik and T. Pisanski: Computing the diameter in multiple-loop networks, J. Algorithms 14 (1993), 226–243.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jens Marklof.

Additional information

J. M. is supported by a Royal Society Wolfson Research Merit Award and a Leverhulme Trust Research Fellowship.

A. S. is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation, and is furthermore supported by the Swedish Research Council Grant 621-2007-6352.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marklof, J., Strömbergsson, A. Diameters of random circulant graphs. Combinatorica 33, 429–466 (2013). https://doi.org/10.1007/s00493-013-2820-6

Download citation

Mathematics Subject Classification (2010)

  • 05C12
  • 05C80
  • 11H31
  • 37A17
  • 90B10