Local chromatic number of quadrangulations of surfaces

Abstract

The local chromatic number of a graph G, as introduced in [4], is the minimum integer k such that G admits a proper coloring (with an arbitrary number of colors) in which the neighborhood of each vertex uses less than k colors. In [17] a connection of the local chromatic number to topological properties of (a box complex of) the graph was established and in [18] it was shown that a topological condition implying the usual chromatic number being at least four has the stronger consequence that the local chromatic number is also at least four. As a consequence one obtains a generalization of the following theorem of Youngs [19]: If a quadrangulation of the projective plane is not bipartite it has chromatic number four. The generalization states that in this case the local chromatic number is also four.

Both papers [1] and [13] generalize Youngs’ result to arbitrary non-orientable surfaces replacing the condition of the graph being not bipartite by a more technical condition of an odd quadrangulation. This paper investigates when these general results are true for the local chromatic number instead of the chromatic number. Surprisingly, we find out that (unlike in the case of the chromatic number) this depends on the genus of the surface. For the non-orientable surfaces of genus at most four, the local chromatic number of any odd quadrangulation is at least four, but this is not true for non-orientable surfaces of genus 5 or higher.

We also prove that face subdivisions of odd quadrangulations and Fisk triangulations of arbitrary surfaces exhibit the same behavior for the local chromatic number as they do for the usual chromatic number.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negami, K. Ota: Chromatic numbers of quadrangulations on closed surfaces, J. Graph Theory 37 (2001), 100–114.

    Article  MATH  MathSciNet  Google Scholar 

  2. [2]

    A. Baudisch: Kommutationsgleichungen in semifreien Gruppen, Acta Math. Acad. Sci. Hungar. 29 (1977), 235–249.

    Article  MATH  MathSciNet  Google Scholar 

  3. [3]

    A. Baudisch: Subgroups of semifree groups, Acta Math. Acad. Sci. Hungar. 38 (1981), no. 1–4, 19–28.

    Article  MathSciNet  Google Scholar 

  4. [4]

    P. Erdős, Z. Füredi, A. Hajnal, P. Komjáth, V. Rödl, Á. Seress: Coloring graphs with locally few colors, Discrete Math. 59 (1986), 21–34.

    Article  MathSciNet  Google Scholar 

  5. [5]

    S. Fisk: The non-existence of colorings, J. Combin. Theory Ser. B 24 (1978), 247–248.

    Article  MATH  MathSciNet  Google Scholar 

  6. [6]

    A. Gyárfás, T. Jensen, M. Stiebitz: On graphs with strongly independent colorclasses, J. Graph Theory 46 (2004), 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  7. [7]

    J. Hutchinson, R. B. Richter, P. Seymour: Colouring Eulerian triangulations, J. Combin. Theory Ser. B 84 (2002), 225–239.

    Article  MATH  MathSciNet  Google Scholar 

  8. [8]

    W. S. Massey: Algebraic Topology: An Introduction, Harcourt, Brace and World, 1967.

    Google Scholar 

  9. [9]

    J. Matoušek: Using the Borsuk-Ulam theorem, Lectures on topological methods in combinatorics and geometry, Written in cooperation with A. Björner and G. M. Ziegler, Universitext, Springer-Verlag, Berlin, corrected and updated 2nd printing, 2007.

    Google Scholar 

  10. [10]

    J. Matoušek, G. M. Ziegler: Topological lower bounds for the chromatic number: A hierarchy, Jahresber. Deutsch. Math.-Verein. 106 (2004), 71–90, arXiv:math.CO/0208072.

    MATH  MathSciNet  Google Scholar 

  11. [11]

    B. Mohar: Quadrangulations and 5-critical graphs on the projective plane, in “Topics in Discrete Mathematics,” M. Klazar, J. Kratochvíl, M. Loebl, J. Matoušsek, R. Thomas, P. Valtr (Editors), Springer, 2006, 565–580.

    Google Scholar 

  12. [12]

    H. Kneser: Die kleinste Bedeckungszahl innerhalb einer Klasse von Flächenabbildungen, Math. Ann. 103 (1930), 347–358.

    Article  MATH  MathSciNet  Google Scholar 

  13. [13]

    B. Mohar, P. D. Seymour: Coloring locally bipartite graphs on surfaces, J. Combin. Theory Ser. B 84 (2002), 301–310.

    Article  MATH  MathSciNet  Google Scholar 

  14. [14]

    B. Mohar, C. Thomassen: Graphs on surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.

    Google Scholar 

  15. [15]

    A. Nakamoto, S. Negami, K. Ota: Chromatic numbers and cycle parities of quadrangulations on nonorientable closed surfaces, Discrete Math. 285 (2004), 211–218.

    Article  MATH  MathSciNet  Google Scholar 

  16. [16]

    S. Negami, A. Nakamoto: Diagonal transformations of graphs on closed surfaces, Sci. Rep. Yokohama Nat. Univ. Sec. I 40 (1993), 71–97.

    MathSciNet  Google Scholar 

  17. [17]

    G. Simonyi, G. Tardos: Local chromatic number, Ky Fan’s theorem, and circular colorings, Combinatorica 26 (2006), 587–626, arxiv:math.CO/0407075.

    Article  MATH  MathSciNet  Google Scholar 

  18. [18]

    G. Simonyi, G. Tardos, S. T. Vrećica: Local chromatic number and distinguishing the strength of topological obstructions, Trans. Amer. Math. Soc. 361 (2009), 889–908, arxiv:math.CO/0502452.

    Article  MATH  MathSciNet  Google Scholar 

  19. [19]

    D. A. Youngs: 4-chromatic projective graphs, J. Graph Theory 21 (1996), 219–227.

    Article  MATH  MathSciNet  Google Scholar 

  20. [20]

    H. Zieschang, E. Vogt, H.-D. Coldewey: Surfaces and planar discontinuous groups, Lecture Notes in Mathematics, 835, Springer-Verlag, Berlin, Heidelberg, New York, 1980.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bojan Mohar.

Additional information

Supported in part by an NSERC Discovery Grant, by the Canada Research Chair program, and by Research Grant P1-0297 of ARRS, Slovenia.

Research partially supported by the Hungarian Foundation for Scientific Research Grant (OTKA) Nos. K76088 and NK78439.

Supported by an NSERC grant, the Lendület project of the Hungarian Academy of Sciences, and the Hungarian Foundation for Scientific Research Grant (OTKA) Nos. T102029 and NK78439.

Bojan Mohar On leave from: IMFM & FMF Department of Mathematics University of Ljubljana Ljubljana, Slovenia

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohar, B., Simonyi, G. & Tardos, G. Local chromatic number of quadrangulations of surfaces. Combinatorica 33, 467–494 (2013). https://doi.org/10.1007/s00493-013-2771-y

Download citation

Mathematics Subject Classification (2010)

  • 05C15
  • 05C10