Ramsey degrees of boron tree structures


We investigate the combinatorial properties of the Fraïssé class of structures induced by the leaf sets of boron trees — graph-theoretic binary trees without an assigned root — and compute their Ramsey degrees. The Ramsey degree of a boron tree structure is shown to equal the number of its possible orientations, which are herein defined to depend on the embedding of the said structure. One direction of this computation involves an asymmetric version of the Graham-Rothschild theorem. By expanding these structures to oriented ones, we arrive at a Fraïssé class which possesses the Ramsey property. Consequently, the automorphism group of its Fraïssé limit is extremely amenable, i.e., it possesses a very strong fixed point property. Furthermore, we construct the universal minimal flow of the automorphism group of this limit.

This is a preview of subscription content, access via your institution.


  1. [1]

    P. J. Cameron: Oligomorphic Permutation Groups, London Math. Society Lecture Note Series 152, 1990.

    Google Scholar 

  2. [2]

    P. J. Cameron: Some treelike objects, Quart. J. Math. Oxford Ser. (2) 38(150) (1987), 155–183.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    W. Deuber: A generalization of Ramsey’s theorem for regular trees, J. Combinatorial Theory Ser. B 18 (1975), 18–23.

    MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    W. L. Fouché: Symmetries and Ramsey properties of trees, Discrete Mathematics 197/198 (1999), 325–330.

    Google Scholar 

  5. [5]

    R. Fraïssé: Sur l’extension aux relations de quelques propriétés des ordres (in French), Ann. Sci. Ecole Norm. Sup. 71(3) (1954), 363–388.

    MathSciNet  MATH  Google Scholar 

  6. [6]

    R. Fraïssé: Theory of Relations, Elsevier, Rev. ed., 2000.

    Google Scholar 

  7. [7]

    R. L. Graham, B. L. Rothschild: Ramsey’s theorem for n-parameter sets, Trans. Amer. Math. Soc. 159 (1971), 257–292.

    MathSciNet  MATH  Google Scholar 

  8. [8]

    A. S. Kechris, V. G. Pestov, S. Todorcevic: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15(1) (2005), 106–189.

    MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    K. R. Milliken: A Ramsey theorem for trees, J. Combin. Theory Ser. A 26(3) (1979), 215–237.

    MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    J. Nešetřil: Ramsey Classes and Homogeneous Structures, Comb. Probab. Comput. 14(1) (2005), 171–189.

    MATH  Article  Google Scholar 

  11. [11]

    J. Nešetřil: Ramsey Theory, Handbook of Combinatorics, (R. Graham, et al., eds.), Elsevier (1995), 1331–1403.

  12. [12]

    J. Nešetřil, V. Rödl: The partite construction and Ramsey set systems, Discrete Mathematics 75(1–3) (1989), 327–334.

    MathSciNet  MATH  Google Scholar 

  13. [13]

    V. Pestov: Dynamics of Infinite-dimensional Groups: The Ramsey-Dvoretzky-Milman Phenomenon, American Math. Society University Lecture Series 40, 2006.

  14. [14]

    B. Voigt: The partition problem for finite abelian groups, J. Combin. Theory A 28 (1980), 257–271.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jakub Jasiński.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jasiński, J. Ramsey degrees of boron tree structures. Combinatorica 33, 23–44 (2013). https://doi.org/10.1007/s00493-013-2723-6

Download citation

Mathematics Subject Classification (2010)

  • 05D10
  • 05C05
  • 03C13
  • 03C15
  • 37B05
  • 43A07
  • 54H20