Remarks on a Ramsey theory for trees

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Alon and J. Spencer: The Probabilistic Method, 3rd ed., Wiley, New York, 2008.

    Google Scholar 

  2. [2]

    V. Bergelson and A. Leibman: Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725–753.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    V. Bergelson and A. Leibman: Set polynomials and a polynomial extension of the Hales-Jewett theorem, Ann. of Math. (2) 150 (1999), 33–75.

    MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    P. Erdős, P. Turán: On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.

    Article  Google Scholar 

  5. [5]

    H. Furstenberg: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

    MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    H. Furstenberg and Y. Katznelson: A density version of the Hales-Jewett theorem, J. d’Analyse Math. 57 (1991), 64–119.

    MathSciNet  MATH  Google Scholar 

  7. [7]

    H. Furstenberg and B. Weiss: Markov processes and Ramsey theory for trees, Combin. Probab. Comp. 12 (2003), 547–563.

    MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    W. T. Gowers: A new proof of Szemerédi’s theorem, Geometric And Functional Analysis 11 (2001), 465–588.

    MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    A. Rényi: Foundations of Probability, Holden-Day, San Francisco, 1970.

    Google Scholar 

  10. [10]

    E. Szemerédi: On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 299–345.

    Google Scholar 

  11. [11]

    T. Tao: A quantitative ergodic theory proof of Szemerédi’s theorem, Electronic J. Comb. 13 (2006), # R99.

    Google Scholar 

  12. [12]

    B. L. van der Waerden: Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212–216.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to János Pach.

Additional information

Dedicated to Endre Szemerédi on the occasion of his 70th birthday.

Supported by NSF Grant CCF-08-30272, by OTKA NN102029 under EuroGIGA project GraDR, and by Swiss National Science Foundation Grant 200021-125287/1.

Supported by an NSERC grant and by Hungarian National Science Foundation grants.

Supported by an NSERC grant and by Hungarian National Science Foundation grants OTKA NN-102029 and NK-78439.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pach, J., Tardos, G. & Solymosi, J. Remarks on a Ramsey theory for trees. Combinatorica 32, 473–482 (2012). https://doi.org/10.1007/s00493-012-2763-3

Download citation

Mathematics Subject Classification (2010)

  • 05D10
  • 05D40