Three notions of tropical rank for symmetric matrices

Abstract

We introduce and study three different notions of tropical rank for symmetric and dissimilarity matrices in terms of minimal decompositions into rank 1 symmetric matrices, star tree matrices, and tree matrices. Our results provide a close study of the tropical secant sets of certain nice tropical varieties, including the tropical Grassmannian. In particular, we determine the dimension of each secant set, the convex hull of the variety, and in most cases, the smallest secant set which is equal to the convex hull.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Akian, S. Gaubert, A. Guterman: Linear independence over tropical semirings and beyond, in: Tropical and idempotent mathematics (G. L. Litvinov and S. N. Sergeev, eds), Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 495:1–38, 2009.

    Google Scholar 

  2. [2]

    R. Bieri, J. Groves: The geometry of the set of characters induced by valuations, J. Reine. Angew. Math. 347 (1984), 168–195.

    MathSciNet  MATH  Google Scholar 

  3. [3]

    J. A. Bondy, V. S. R. Murty: Graph Theory with Applications, Elsevier, New York, 1982.

    Google Scholar 

  4. [4]

    M. V. Catalisano, A. V. Geramita, A. Gimigliano: Secant varieties of Grassmann varieties, Proc. of the Amer. Math. Soc. 133 (2004), 633–642.

    MathSciNet  Article  Google Scholar 

  5. [5]

    M. A. Cueto: Tropical mixtures of star tree metrics, preprint, arXiv:0907.2053 2009.

  6. [6]

    M. Develin: Tropical secant varieties of linear spaces, Discrete and Computational Geometry 35 (2006), 117–129.

    MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    M. Develin, F. Santos, B. Sturmfels: On the rank of a tropical matrix, in: “Discrete and Computational Geometry” (E. Goodman, J. Pach and E. Welzl, eds), MSRI Publications, Cambridge University Press, 2005.

  8. [8]

    J. Draisma: A tropical approach to secant dimensions, Journal of Pure and Applied Algebra, 212(2) (2008), 349–363.

    MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    M. Drton, B. Sturmfels, S. Sullivant: Algebraic factor analysis: tetrads, pentads and beyond, Probability Theory and Related Fields 138(3/4) (2007), 463–493.

    MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    P. Erdős, A. W. Goodman, L. Pósa: The representation of a graph by set intersections, Canad. J. Math. 18 (1966), 106–112.

    MathSciNet  Article  Google Scholar 

  11. [11]

    C. D. Godsil: Algebraic Combinatorics, Chapman and Hall, New York, 1993.

    MATH  Google Scholar 

  12. [12]

    J. Oxley: Matroid Theory, Oxford Univ. Press, New York, 1992.

    MATH  Google Scholar 

  13. [13]

    L. Pachter, B. Sturmfels: Algebraic Statistics for Computational Biology, Cambridge University Press, Cambridge, 2005.

    MATH  Book  Google Scholar 

  14. [14]

    S. Radziszowski: Small Ramsey Numbers, Electronic Journal of Combinatorics, Dynamic survey http://www.combinatorics.org/Surveys/index.html, updated 2009.

  15. [15]

    D. Speyer, B. Sturmfels: The tropical Grassmannian, Adv. Geom. 4(3) (2004), 389–411.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dustin Cartwright.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cartwright, D., Chan, M. Three notions of tropical rank for symmetric matrices. Combinatorica 32, 55–84 (2012). https://doi.org/10.1007/s00493-012-2701-4

Download citation

Mathematics Subject Classification (2000)

  • 52C99