Skip to main content
Log in

Almost all triangle-free triple systems are tripartite

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A triangle in a triple system is a collection of three edges isomorphic to {123,124,345}. A triple system is triangle-free if it contains no three edges forming a triangle. It is tripartite if it has a vertex partition into three parts such that every edge has exactly one point in each part. It is easy to see that every tripartite triple system is triangle-free. We prove that almost all triangle-free triple systems with vertex set [n] are tripartite.

Our proof uses the hypergraph regularity lemma of Frankl and Rödl [13], and a stability theorem for triangle-free triple systems due to Keevash and the second author [15].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Balogh, B. Bollobás and M. Simonovits: On the number of graphs without Forbidden subgraph, J. Combin. Theory Ser. B 91 (2004), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Balogh, B. Bollobás and M. Simonovits: The typical structure of graphs without given excluded subgraphs, Random Structures and Algorithms 34 (2009), 305–318.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Balogh, B. Bollobás and M. Simonovits: The fine structure of octahedron-free graphs, J. Combin. Theory, Ser. B 101(2) (2011), 67–84.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Balogh and J. Butterfield: Excluding induced subgraphs: Critical graphs; Random Structures and Algorithms 38(1–2) (2011), 100–120.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Balogh and D. Mubayi: Almost all triple systems with independent neighborhoods are semi-bipartite, J. Combin. Theory, Ser. A 118(4) (2011), 1494–1518.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Balogh and W. Samotij: The number of Ks,t-free graphs, Journal of the London Mathematical Society 83 (2011), 368–388.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bollobás: Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math. 8 (1974), 21–24.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Bollobás and A. Thomason: Projections of bodies and hereditary properties of hypergraphs, Bull. London Math. Soc. 27 (1995), 417–424.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Dotson and N. Brendan: Hereditary properties of hypergraphs, J. Combin. Theory, Ser. B 99 (2009), 460–473.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Erdős, P. Frankl and V. Rödl: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combin. 2 (1986), 113–121.

    Article  MathSciNet  Google Scholar 

  11. P. Erdős, D. J. Kleitman and B. L. Rothschild: Asymptotic enumeration of K n-free graphs, in Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Vol. II, 19–27. Atti dei Convegni Lincei, 17, Accad. Naz. Lincei, Rome, 1976.

  12. P. Frankl and Z. Füredi: A new generalization of the Erdős-Ko-Rado theorem, Combinatorica 3(3–4) (1983), 341–349.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Frankl and V. Rödl: Extremal problems on set systems, Random Structures and Algorithms 20(2) (2002), 131–164.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Füredi and M. Simonovits: Triple systems not containing a Fano configuration, Combinatorics, Probabality and Computing 14 (2005), 467–484.

    Article  MATH  Google Scholar 

  15. P. Keevash and D. Mubayi: Stability results for cancellative hypergraphs, J. Combin. Theory, Ser. B 92 (2004), 163–175.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Keevash and B. Sudakov: The Turán number of the Fano plane, Combinatorica 25(5) (2005), 561–574.

    Article  MathSciNet  Google Scholar 

  17. Y. Kohayakawa, B. Nagle, V. Rödl and M. Schacht: Weak hypergraph regularity and linear hypergraphs, J. Combin. Theory, Ser. B 100(2) (2010), 151–160.

    Article  Google Scholar 

  18. Ph. G. Kolaitis, H. J. Prömel and B. L. Rothschild: K l+1-free graphs: asymptotic structure and a 0-1 law, Trans. Amer. Math. Soc. 303 (1987), 637–671.

    MathSciNet  MATH  Google Scholar 

  19. B. Nagle and V. Rödl: The asymptotic number of 3-graphs not containing a fixed one, Discrete Math. 235 (2001), 271–290.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Nagle, V. Rödl and M. Schacht: Extremal hypergraph problems and the regularity method, Topics in Discrete Mathematics, Algorithms Combin. vol. 26, Springer, Berlin (2006), 247–278.

    Google Scholar 

  21. Y. Person and M. Schacht: Almost all hypergraphs without Fano planes are bipartite, in: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (C. Mathieu, ed.), (SODA 09), 217–226. ACM Press.

  22. H. J. Prömel and A. Steger: The asymptotic number of graphs not containing a fixed color-critical subgraph, Combinatorica 12(4) (1992), 463–473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Balogh.

Additional information

Research supported in part by NSF CAREER Grant DMS-0745185 and DMS-0600303, UIUC Campus Research Board Grants 09072 and 08086, and OTKA Grant K76099.

Research supported in part by NSF grants DMS 0653946 and 0969092.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balogh, J., Mubayi, D. Almost all triangle-free triple systems are tripartite. Combinatorica 32, 143–169 (2012). https://doi.org/10.1007/s00493-012-2657-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-012-2657-4

Mathematics Subject Classification (2000)

Navigation