Treewidth computation and extremal combinatorics

Abstract

For a given graph G and integers b,f ≥0, let S be a subset of vertices of G of size b+1 such that the subgraph of G induced by S is connected and S can be separated from other vertices of G by removing f vertices. We prove that every graph on n vertices contains at most \(n\left( {_b^{b + f} } \right)\) such vertex subsets. This result from extremal combinatorics appears to be very useful in the design of several enumeration and exact algorithms. In particular, we use it to provide algorithms that for a given n-vertex graph G

  1. compute the treewidth of G in time O(1.7549n) by making use of exponential space and in time O(2.6151n) and polynomial space

  2. decide in time O(n 5·\(_{k + 2}^{\left\lceil {(2n + k + 8)/3} \right\rceil } \)) if the treewidth of G is at most k

  3. list all minimal separators of G in time O(1.6181n) and all potential maximal cliques of G in time O(1.7549n).

This significantly improves previous algorithms for these problems.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S. Arnborg, D. G. Corneil and A. Proskurowski: Complexity of finding embeddings in a k-tree, SIAM J. Algebraic Discrete Methods 8 (1987), 277–284.

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    C. Beeri, R. Fagin, D. Maier and M. Yannakakis: On the desirability of acyclic database schemes, J. ACM 30 (1983), 479–513.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    A. Berry, J. P. Bordat and O. Cogis: Generating all the minimal separators of a graph., Int. J. Found. Comput. Sci. 11 (2000), 397–403.

    MathSciNet  Article  Google Scholar 

  4. [4]

    A. Björklund, T. Husfeldt, P. Kaski and M. Koivisto: The travelling salesman problem in bounded degree graphs, in: Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP 2008), vol. 5125 of Lecture Notes in Comput. Sci., Springer, 2008, 198–209.

  5. [5]

    A. Björklund, T. Husfeldt, P. Kaski and M. Koivisto: Trimmed Moebius inversion and graphs of bounded degree, Theory Comput. Syst. 47 (2010), 637–654.

    MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    H. L. Bodlaender: A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput. 25 (1996), 1305–1317.

    MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    H. L. Bodlaender: A partial k-arboretum of graphs with bounded treewidth, Theor. Comp. Sci. 209 (1998), 1–45.

    MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch and D. M. Thilikos: On exact algorithms for treewidth, in: Proceedings of the 14th Annual European Symposium on Algorithms (ESA 2006), vol. 4168 of Lecture Notes in Comput. Sci., Springer, 2006, 672–683.

  9. [9]

    H. L. Bodlaender and A. M. C. A. Koster: Combinatorial Optimization on Graphs of Bounded Treewidth, The Computer Journal 51(3), 2008, 255–269.

    MathSciNet  Article  Google Scholar 

  10. [10]

    B. Bollobás: On generalized graphs, Acta Math. Acad. Sci. Hungar. (1965), 447–452.

  11. [11]

    V. Bouchitté and I. Todinca: Treewidth and minimum fill-in: Grouping the minimal separators, SIAM J. Comput. 31 (2001), 212–232.

    MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    V. Bouchitté and I. Todinca: Listing all potential maximal cliques of a graph., Theor. Comput. Sci. 276 (2002), 17–32.

    MATH  Article  Google Scholar 

  13. [13]

    P. Buneman: A characterization of rigid circuit graphs, Discrete Math. 9 (1974), 205–212.

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    M. Davis, G. Logemann and D. Loveland: A machine program for theoremproving, Comm. ACM 5 (1962), 394–397.

    MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    M. Davis and H. Putnam: A computing procedure for quantification theory, J. ACM 7 (1960), 201–215.

    MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    Y. Dourisboure and C. Gavoille: Tree-decompositions with bags of small diameter Discrete Mathematics, 307 (2007), 2008–2029.

    MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    U. Feige, M. Hajiaghayi and J. R. Lee: Improved approximation algorithms for minimum weight vertex separators, SIAM J. Comput. 38 (2008), 629–657.

    MathSciNet  Article  Google Scholar 

  18. [18]

    F. Fomin, F. Grandoni and D. Kratsch: Some new techniques in design and analysis of exact (exponential) algorithms, Bulletin of the European Association for Theoretical Computer Science 87 (2005), 47–77.

    MathSciNet  MATH  Google Scholar 

  19. [19]

    F. V. Fomin and D. Kratsch: Exact Exponential Algorithms, Springer, 2010.

  20. [20]

    F. V. Fomin, D. Kratsch and I. Todinca: Exact algorithms for treewidth and minimum fill-in, in: Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP 2004), vol. 3142 of Lecture Notes in Comput. Sci., Springer, Berlin, 2004, 568–580.

    Google Scholar 

  21. [21]

    F. V. Fomin, D. Kratsch, I. Todinca and Y. Villanger: Exact algorithms for treewidth and minimum fill-in, SIAM J. Comput. 38 (2008), 1058–1079.

    MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    F. V. Fomin and Y. Villanger: Treewidth computation and extremal combinatorics, in: Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP 2008), vol. 5125 of Lecture Notes in Comput. Sci., Springer, 2008, 210–221.

  23. [23]

    M. C. Golumbic: Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, (1980).

    MATH  Google Scholar 

  24. [24]

    R. L. Graham, D. E. Knuth and O. Patashnik: Concrete mathematics: A foundation for computer science, Addison-Wesley Publishing Company, Reading, MA, second ed., 1994.

    MATH  Google Scholar 

  25. [25]

    M. Held and R. M. Karp: A dynamic programming approach to sequencing problems, Journal of SIAM 10 (1962), 196–210.

    MathSciNet  MATH  Google Scholar 

  26. [26]

    C.-W. Ho and R. C. T. Lee: Counting clique trees and computing perfect elimination schemes in parallel, Inform. Process. Lett. 31 (1989), 61–68.

    MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    K. Iwama: Worst-case upper bounds for k-SAT, Bulletin of the European Association for Theoretical Computer Science 82 (2004), 61–71.

    MathSciNet  MATH  Google Scholar 

  28. [28]

    S. Jukna: Extremal combinatorics with applications in computer science, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  29. [29]

    T. Kloks and D. Kratsch: Listing all minimal separators of a graph., SIAM J. Comput. 27 (1998), 605–613.

    MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    D. Lokshtanov: On the complexity of computing treelength, in: Proceedings of the 32nd International Symposium Mathematical Foundations of Computer Science (MFCS 2007), vol. 4708 of Lecture Notes in Comput. Sci., Springer, 2007, 276–287.

  31. [31]

    S. Parter: The use of linear graphs in Gauss elimination, SIAM Review 3 (1961), 119–130.

    MathSciNet  MATH  Article  Google Scholar 

  32. [32]

    N. Robertson and P. D. Seymour: Graph minors. II. Algorithmic aspects of treewidth, Journal of Algorithms 7 (1986), 309–322.

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    D. J. Rose: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations, in: Graph Theory and Computing, R. C. Read, ed., Academic Press, New York, 1972, 183–217.

    Google Scholar 

  34. [34]

    U. Schöning: Algorithmics in exponential time, in: Proceedings of the 22nd International Symposium on Theoretical Aspects of Computer Science (STACS 2005), vol. 3404 of Lecture Notes in Comput. Sci., Springer, 2005, 36–43.

  35. [35]

    S. Seiden: Theoretical computer science cheat sheet, SIGACT News 27 (1996), 52–61.

    Article  Google Scholar 

  36. [36]

    R. E. Tarjan and A. E. Trojanowski: Finding a maximum independent set, SIAM J. Computing 6 (1977), 537–546.

    MathSciNet  MATH  Article  Google Scholar 

  37. [37]

    Y. Villanger: Improved exponential-time algorithms for treewidth and minimum fill-in, in: Proceedings of the 7th Latin American Theoretical Informatics Symposium (LATIN 2006), vol. 3887 of Lecture Notes in Comput. Sci., Springer, 2006, 800–811.

  38. [38]

    G. Woeginger: Exact algorithms for NP-hard problems: A survey, in: Combinatorial Optimization — Eureka, You Shrink!, vol. 2570 of Lecture Notes in Comput. Sci., Springer, 2003, 185–207.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fedor V. Fomin.

Additional information

This research was partially supported by the Research Council of Norway. Extended abstract of this paper was presented in [22].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fomin, F.V., Villanger, Y. Treewidth computation and extremal combinatorics. Combinatorica 32, 289–308 (2012). https://doi.org/10.1007/s00493-012-2536-z

Download citation

Mathematics Subject Classification (2000)

  • 05C85
  • 68R05