Abstract
Turán’s Theorem states that every graph G of edge density \({{\left\| G \right\|} \mathord{\left/ {\vphantom {{\left\| G \right\|} {\left( {_2^{\left| G \right|} } \right) > }}} \right. \kern-\nulldelimiterspace} {\left( {_2^{\left| G \right|} } \right) > }}\frac{{k - 2}} {{k - 1}}\) contains a complete graph K k and describes the unique extremal graphs. We give a similar Theorem for λ-partite graphs. For large λ, we find the minimal edge density d k λ , such that every λ-partite graph whose parts have pairwise edge density greater than d k λ contains a K k. It turns out that \(d_\ell ^k = \frac{{k - 2}} {{k - 1}}\) for large enough λ. We also describe the structure of the extremal graphs.
This is a preview of subscription content, access via your institution.
References
- [1]
B. Bollobás: Extremal Graph Theory, Academic Press London (1978).
- [2]
A. Bondy, J. Shen, S. Thomassé and C. Thomassen: Density conditions for triangles in multipartite graphs, Combinatorica 26 (2006), 121–131.
- [3]
R. Diestel: Graph Theory, Springer-Verlag New York (1997).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pfender, F. Complete subgraphs in multipartite graphs. Combinatorica 32, 483–495 (2012). https://doi.org/10.1007/s00493-012-2425-5
Received:
Revised:
Published:
Issue Date:
Mathematics Subject Classification (2000)
- 05C35 (05C69)