Face numbers of generalized balanced Cohen-Macaulay complexes


A common generalization of two theorems on the face numbers of Cohen-Macaulay (CM, for short) simplicial complexes is established: the first is the theorem of Stanley (necessity) and Björner-Frankl-Stanley (sufficiency) that characterizes all possible face numbers of a-balanced CM complexes, while the second is the theorem of Novik (necessity) and Browder (sufficiency) that characterizes the face numbers of CM subcomplexes of the join of the boundaries of simplices.

This is a preview of subscription content, access via your institution.


  1. [1]

    A. Aramova, J. Herzog and T. Hibi: Shifting operations and graded Betti numbers, J. Algebraic Combin. 12 (2000), 207–222.

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    A. Björner, P. Frankl and R. Stanley: The number of faces of balanced Cohen-Macaulay complexes and a generalized Macaulay theorem, Combinatorica 7 (1987), 23–34.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    J. Browder: Shellable complexes from multicomplexes, J. Algebraic Combin. 32 (2010), 99–112.

    MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    G. F. Clements and B. Lindström: A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory 7 (1969), 230–238.

    MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    D. Eisenbud: Commutative Algebra with a View Toward Algebraic Geometry, Springer, New York, 1995.

    Google Scholar 

  6. [6]

    P. Frankl, Z. Füredi and G. Kalai: Shadows of colored complexes, Math. Scand. 63 (1988), 169–178.

    MathSciNet  MATH  Google Scholar 

  7. [7]

    G. O. H. Katona: A theorem of finite sets, in: Theory of graphs (Proc. Colloq. Tihany, 1966), 187–207, Academic Press, New York, 1968.

    Google Scholar 

  8. [8]

    J. Kruskal: The number of simplices in a complex, Mathematical Optimization Techniques, University of California Press, Berkeley and Los Angeles, 1963, 251–278.

    Google Scholar 

  9. [9]

    F. S. Macaulay: Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531–555.

    MATH  Article  Google Scholar 

  10. [10]

    P. McMullen: The maximum number of faces of a convex polytope, Mathematika 17 (1970), 179–184.

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    J. Mermin and I. Peeva: Lexifying ideals, Math. Res. Lett., 13(2–3) (2006), 409–422.

    MathSciNet  MATH  Google Scholar 

  12. [12]

    I. Novik: On face numbers of manifolds with symmetry, Adv. Math. 192 (2005), 183–208.

    MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    G. A. Reisner: Cohen-Macaulay quotients of polynomial rings, Adv. Math. 21 (1976), 30–49.

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    R. P. Stanley: Cohen-Macaulay complexes, in: M. Aigner (Ed.), Higher Combinatorics, Reidel, Dordrecht and Boston, 1977, 51–62.

    Google Scholar 

  15. [15]

    R. Stanley: Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249 (1979), 139–157.

    MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    R. P. Stanley: Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jonathan Browder.

Additional information

Novik’s research is partially supported by Alfred P. Sloan Research Fellowship and NSF grant DMS-0801152

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Browder, J., Novik, I. Face numbers of generalized balanced Cohen-Macaulay complexes. Combinatorica 31, 669–689 (2011). https://doi.org/10.1007/s00493-011-2675-7

Download citation

Mathematics Subject Classification (2000)

  • 05E45
  • 52B22
  • 13F55