A local criterion for Tverberg graphs

Abstract

The topological Tverberg theorem states that for any prime power q and continuous map from a (d+1)(q−1)-simplex to ℝd, there are q disjoint faces F i of the simplex whose images intersect. It is possible to put conditions on which pairs of vertices of the simplex that are allowed to be in the same face F i . A graph with the same vertex set as the simplex, and with two vertices adjacent if they should not be in the same F i , is called a Tverberg graph if the topological Tverberg theorem still work.

These graphs have been studied by Hell, Schöneborn and Ziegler, and it is known that disjoint unions of small paths, cycles, and complete graphs are Tverberg graphs. We find many new examples by establishing a local criterion for a graph to be Tverberg. An easily stated corollary of our main theorem is that if the maximal degree of a graph is D, and D(D+1)<q, then it is a Tverberg graph.

We state the affine versions of our results and also describe how they can be used to enumerate Tverberg partitions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    I. Bárány, S.B. Shlosman, A. Szűcs: On a topological generalization of a theorem of Tverberg, J. London Math. Soc. 23(2) (1981), 158–164.

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    P.V.M. Blagojević, B. Matschke, G.M. Ziegler: Optimal bounds for the colored Tverberg problem, arxiv:0910.4987.

  3. [3]

    P.V.M. Blagojević, B. Matschke, G.M. Ziegler: Optimal bounds for a colorful Tverberg-Vrecica type problem, Adv. Math. 226 (2011), 5198–5215.

    MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    A. Björner: Topological Methods, in: “Handbook of Combinatorics” (eds. R. Graham, M. Grötschel, and L. Lovász), North-Holland, 1995, 1819–1872.

  5. [5]

    A. Björner, L. Lovász, R. Živaljević, S. Vrećica: Chessboard complexes and matching complexes, J. London Math. Soc. 49 (1994), 25–39.

    MathSciNet  MATH  Google Scholar 

  6. [6]

    J.A. Bondy, U.S.R. Murty: Graph theory, Graduate Texts in Mathematics, 244. Springer, New York, 2008.

    Google Scholar 

  7. [7]

    A. Dochtermann, A. Engström: Algebraic properties of edge ideals via combinatorial topology. Electron. J. Combin. 16 (2009), no. 2, Special volume in honor of Anders Björner, Research Paper 2, 24.

    Google Scholar 

  8. [8]

    A. Engström: Independence complexes of claw-free graphs, European J. Combin. 29 (2008), no. 1, 234–241.

    MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    A. Engström, P. Norén: Tverberg’s theorem and graph coloring, arxiv: 1105.1455.

  10. [10]

    S. Hell: On the number of Tverberg partitions in the prime power case, European J. Combin. 28 (2007), 347–355.

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    S. Hell: Tverberg’s theorem with constraints, J. Combin. Theory, Ser. A 115 (2008), 1402–1416.

    MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    J. Matoušek: Using the Borsuk-Ulam theorem, Springer-Verlag, Berlin, 2nd corrected priting, 2008.

    Google Scholar 

  13. [13]

    K.S. Sarkaria: Tverberg partitions and Borsuk-Ulam theorems, Pacific J. Math. 196 (2000), 231–241.

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    T. Schöneborn, G.M. Ziegler: The Topological Tverberg Theorem and winding numbers, J. Combin. Theory, Ser. A 112 (2005), 82–104.

    MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    H. Tverberg: A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966), 123–128.

    MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    A.Y. Volovikov: On a topological generalization of Tverberg’s theorem, Mat. Zametski 59 (1996), 454–456 (Translation: Math. Notes. 59 3–4 (1996), 324–325).

    MathSciNet  Google Scholar 

  17. [17]

    A. Vrećica, R. Živaljević: The colored Tverberg’s problem and complexes of injective functions, J. Combin. Theory, Ser. A 22 (1990), 183–186.

    MATH  Google Scholar 

  18. [18]

    A. Vučić, R. Živaljević: Note on a conjecture of Sierksma, Discrete Comput. Geom. 9 (1993), no. 4, 339–349.

    MathSciNet  MATH  Google Scholar 

  19. [19]

    G.M. Ziegler: Shellability of chessboard complexes. Israel J. Math. 87 (1994), no. 1–3, 97–110.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Engström.

Additional information

The author is a Miller Research Fellow 2009–2012 at UC Berkeley, and gratefully acknowledges support from the Adolph C. and Mary Sprague Miller Institute for Basic Research in Science.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Engström, A. A local criterion for Tverberg graphs. Combinatorica 31, 321 (2011). https://doi.org/10.1007/s00493-011-2665-9

Download citation

Mathematics Subject Classification (2000)

  • 52A35
  • 57M15, 05C10