Inside S-inner product sets and Euclidean designs

Abstract

A finite set X in the Euclidean space is called an s-inner product set if the set of the usual inner products of any two distinct points in X has size s. First, we give a special upper bound for the cardinality of an s-inner product set on concentric spheres. The upper bound coincides with the known lower bound for the size of a Euclidean 2s-design. Secondly, we prove the non-existence of 2- or 3-inner product sets on two concentric spheres attaining the upper bound for any d>1. The efficient property needed to prove the upper bound for an s-inner product set gives the new concept, inside s-inner product sets. We characterize the most known tight Euclidean designs as inside s-inner product sets attaining the upper bound.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    B. Bajnok: On Euclidean designs, Adv. Geom. 6(3) (2006), 423–438.

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    B. Bajnok: Orbits of the hyperoctahedral group as Euclidean designs, J. Algebraic Combin. 25 (2007), 375–397.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    Ei. Bannai and Et. Bannai: Algebraic Combinatorics on Spheres, Springer, Tokyo, 1999 (in Japanese).

    Google Scholar 

  4. [4]

    Ei. Bannai and Et. Bannai: On Euclidean tight 4-designs, J. Math. Soc. Japan 58(3) (2006), 775–804.

    MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    Ei. Bannai and Et. Bannai: Spherical designs and Euclidean designs, Recent developments in algebra and related areas, 1–37, Adv. Lect. Math. (ALM), 8, Int. Press, Somerville, MA, 2009.

  6. [6]

    Ei. Bannai, Et. Bannai, M. Hirao and M. Sawa: Cubature formulas in numerical analysis and Euclidean tight designs, European J. Combin. 31(2) (2010), 423–441.

    MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    Ei. Bannai, Et. Bannai and J. Shigezumi: A new example of Euclidean tight 6-design, preprint, arXiv:1005.4987.

  8. [8]

    Ei. Bannai, Et. Bannai and D. Stanton: An upper hound for the cardinality of an s-distance set in real Euclidean space, Combinatorica 3 (1983), 147–152.

    MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    Ei. Bannai, Et. Bannai and D. Suprijanto: On the strong non-rigidity of certain tight Euclidean designs, European J. Combin. 28(6) (2007), 1662–1680.

    MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    Ei. Bannai and R. M. Damerell: Tight spherical designs. I, J. Math. Soc. Japan 31(1) (1979), 199–207.

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    Ei. Bannai and R.M. Damerell: Tight spherical designs. II, J. London Math. Soc. (2) 21(1) (1980), 13–30.

    MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    Ei. Bannai, A. Munemasa and B. Venkov: The nonexistence of certain tight spherical designs. With an appendix by Y.-F. S. Petermann, Algebra i Analiz 16(4) (2004), 1–23; translation in St. Petersburg Math. J. 16(4) (2005), 609–625.

    Google Scholar 

  13. [13]

    A. Blokhuis: Few-distance sets, CWI Tract, 7, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1984.

    MATH  Google Scholar 

  14. [14]

    P.J. Cameron: Problems from CGCS Luminy, May 2007, European J. Combin. 31(2) (2010), 644–648.

    Article  Google Scholar 

  15. [15]

    Et. Bannai: New examples of Euclidean tight 4-designs, European J. Combin. 30(3) (2009), 655–667.

    MathSciNet  Article  Google Scholar 

  16. [16]

    Et. Bannai: On antipodal Euclidean tight (2e+1)-designs. J. Algebraic Combin. 24(4) (2006), 391–414.

    MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    Et. Bannai, K. Kawasaki, Y. Nitamizu and T. Sato: An upper bound for the cardinality of an s-distance set in Euclidean space, Combinatorica 23(4) (2003), 535–557.

    MathSciNet  Article  Google Scholar 

  18. [18]

    P. Delsarte, J.M. Goethals and J. J. Seidel: Spherical codes and designs, Geom. Dedicata 6(3) (1977), 363–388.

    MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    P. Delsarte and J. J. Seidel: Fisher type inequalities for Euclidean t-designs, Linear Algebra and its Appl. 114–115 (1989), 213–230.

    MathSciNet  Article  Google Scholar 

  20. [20]

    M. Deza and P. Frankl: Bounds on the maximum number of vectors with given scalar products, Proc. Amer. Math. Soc. 95(2) (1985), 323–329.

    MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    A. Erdélyi et al: Higher Transcendental Functions II, (Bateman Manuscript Project), MacGraw-Hill, 1953.

  22. [22]

    M. Hirao, M. Sawa and Y. Zhou: Some remarks on Euclidean tight designs, J. Combin. Theory, Ser. A 118 (2011), 634–640.

    MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    T. Koornwinder: A note on the absolute bound for systems of lines. Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math. 38(2) (1976), 152–153.

    MathSciNet  Google Scholar 

  24. [24]

    P. Lisoněk: New maximal two-distance sets, J. Combin. Theory, Ser. A 77 (1997), 318–338.

    MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    H. M. Möller: Kubaturformeln mit minimaler Knotenzahl, Numer. Math. 25(2) (1975/76), 185–200.

    Google Scholar 

  26. [26]

    H.M. Möller: Lower bounds for the number of nodes in cubature formulae, Numerische Integration (Tagung, Math. Forschungsinst., Oberwolfach, 1978), 221–230, Internat. Ser. Numer. Math. 45, Birkhäuser, Basel-Boston, Mass., 1979.

    Google Scholar 

  27. [27]

    O. R. Musin: Spherical two-distance sets, J. Combin. Theory. Ser. A 116(4) (2009), 988–995.

    MathSciNet  Article  Google Scholar 

  28. [28]

    A. Neumaier and J. J. Seidel: Discrete measures for spherical designs, eutactic stars and lattices. Nederl. Akad. Wetensch. Indag. Math. 50(3) (1988), 321–334.

    MathSciNet  Google Scholar 

  29. [29]

    H. Nozaki and M. Shinohara: On a generalization of distance sets, J. Combin. Theory. Ser. A 117(7) (2010), 810–826.

    MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    R. A. Rankin: On the closest packing of spheres in n dimensions, Ann. of Math. (2)48, (1947), 1062–1081.

    MathSciNet  Article  Google Scholar 

  31. [31]

    M. A. Taylor: Cubature for the sphere and the discrete spherical harmonic transform, SIAM J. Numer. Math. 32 (1995), 667–670.

    MATH  Article  Google Scholar 

  32. [32]

    B. Venkov: Réseaux et designs sphériques, Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, Monogr. Enseign. Math., vol. 37, Enseign. Math., Gèneve, 2001, 10–86.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nozaki.

Additional information

Supported by JSPS Research Fellow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nozaki, H. Inside S-inner product sets and Euclidean designs. Combinatorica 31, 725–737 (2011). https://doi.org/10.1007/s00493-011-2661-0

Download citation

Mathematics Subject Classification (2000)

  • 05B30
  • 52C99