Proof of a conjecture of V. Nikiforov

Abstract

Using analytical tools, we prove that for any simple graph G on n vertices and its complement \(\bar G\) the inequality \(\mu \left( G \right) + \mu \left( {\bar G} \right) \leqslant \tfrac{4} {3}n - 1\) holds, where μ(G) and \(\mu \left( {\bar G} \right)\) denote the greatest eigenvalue of adjacency matrix of the graphs G and \(\bar G\) respectively.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. P. Aubin: Applied Functional Analysis, John Wiley and Sons, New York, 1979.

    MATH  Google Scholar 

  2. [2]

    P. Csikvári: On a conjecture of V. Nikiforov, Discrete Mathematics 309 (2009), 4522–4526.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    L. Lovász and B. Szegedy: Szemerédi’s Lemma for the analyst, Geom. Func. Anal. 17 (2007), 252–270.

    MATH  Article  Google Scholar 

  4. [4]

    V. Nikiforov: Eigenvalue problems of Nordhaus-Gaddum type, Discrete Mathematics, 307 (2007), 774–780.

    MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    E. Nosal: Eigenvalues of graphs, Master’s Thesis, University of Calgary, 1970.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tamás Terpai.

Additional information

Supported by OTKA grant no. 81203.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Terpai, T. Proof of a conjecture of V. Nikiforov. Combinatorica 31, 739–754 (2011). https://doi.org/10.1007/s00493-011-2652-1

Download citation

Mathematics Subject Classification (2000)

  • 05C35
  • 05C99