On the non-existence of pair covering designs with at least as many points as blocks

Abstract

We establish new lower bounds on the pair covering number C λ (υ,k) for infinitely many values of υ, k and λ, including infinitely many values of υ and k for λ=1. Here, C λ (υ,k) denotes the minimum number of k-subsets of a υ-set of points such that each pair of points occurs in at least λ of the k-subsets. We use these results to prove simple numerical conditions which are both necessary and sufficient for the existence of (K k e)-designs with more points than blocks.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    P. Adams, D. Bryant and M. Buchanan: A survey on the existence of G-designs, J. Combin. Des. 16 (2008), 373–410.

    Article  MATH  MathSciNet  Google Scholar 

  2. [2]

    R.C. Bose and W.S. Connor: Combinatorial properties of group divisible incomplete block designs, Ann. Math. Stat. 23 (1952), 367–383.

    Article  MATH  MathSciNet  Google Scholar 

  3. [3]

    J. C. Bermond and J. Schönheim: G-decomposition of K n, where G has four vertices or less, Discrete Math 19 (1977), 113–120.

    Article  MATH  MathSciNet  Google Scholar 

  4. [4]

    R. H. Bruck and H. J. Ryser: The nonexistence of certain finite projective planes, Canadian Journal of Mathematics 1 (1949), 88–93.

    Article  MATH  MathSciNet  Google Scholar 

  5. [5]

    D. Bryant and S. El-Zanati: Graph decompositions, in: The CRC Handbook of Combinatorial Designs, 2nd edition (Eds. C. J. Colbourn, J. H. Dinitz), CRC Press, Boca Raton (2007), 373–382.

    Google Scholar 

  6. [6]

    S. Chowla and H. J. Ryser: Combinatorial Problems, Canadian Journal of Mathematics 2 (1950), 93–99.

    Article  MATH  MathSciNet  Google Scholar 

  7. [7]

    C. J. Colbourn and P.-J. Wan: Minimizing drop cost for SONET/WDM Networks with 1/8 wavelength requirements, Networks 37 (2001), 107–116.

    Article  MATH  MathSciNet  Google Scholar 

  8. [8]

    R. A. Fisher: An examination of the different possible solutions of a problem in incomplete blocks, Annals of Eugenics 10 (1940), 52–75.

    Article  Google Scholar 

  9. [9]

    G. Ge and A. C. H. Ling: On the existence of (K 5 \ e)-designs with application to optical networks, SIAM J. Discrete Math. 21 (2007), 851–864.

    Article  MATH  MathSciNet  Google Scholar 

  10. [10]

    D. M. Gordon: La Jolla Covering Repository, http://www.ccrwest.org/cover.html.

  11. [11]

    D. M. Gordon and D. R. Stinson: Coverings, in: The CRC Handbook of Combinatorial Designs, 2nd edition (Eds. C. J. Colbourn, J. H. Dinitz), CRC Press, Boca Raton (2007), 365–373.

    Google Scholar 

  12. [12]

    S. G. Hartke, P. R. J. Östergård, D. Bryant and S. I. El-Zanati: The nonexistence of a (K 6e)-decomposition of the complete graph K 29, Journal of Combinatorial Designs 18 (2010), 94–104.

    MATH  MathSciNet  Google Scholar 

  13. [13]

    S. Lang: Algebra, 3rd Edition, Springer, 2002.

  14. [14]

    W. H. Mills and R. C. Mullin: Coverings and packings, in: Contemporary Design Theory, (Eds. J. H. Dinitz and D. R. Stinson), Wiley, (1992), 371–399.

  15. [15]

    D. T. Todorov: Lower bounds for coverings of pairs by large blocks, Combinatorica 9 (1989), 217–225.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Darryn Bryant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bryant, D., Buchanan, M., Horsley, D. et al. On the non-existence of pair covering designs with at least as many points as blocks. Combinatorica 31, 507–528 (2011). https://doi.org/10.1007/s00493-011-2639-y

Download citation

Mathematics Subject Classification (2000)

  • 05B40
  • 05B30
  • 05C51
  • 05C70