The number of K m,m -free graphs

Abstract

A graph is called H-free if it contains no copy of H. Denote by f n (H) the number of (labeled) H-free graphs on n vertices. Erdős conjectured that f n (H) ≤ 2(1+o(1))ex(n,H). This was first shown to be true for cliques; then, Erdős, Frankl, and Rödl proved it for all graphs H with χ(H)≥3. For most bipartite H, the question is still wide open, and even the correct order of magnitude of log2 f n (H) is not known. We prove that f n (K m,m ) ≤ 2O(n 2−1/m) for every m, extending the result of Kleitman and Winston and answering a question of Erdős. This bound is asymptotically sharp for m∈{2,3}, and possibly for all other values of m, for which the order of ex(n,K m,m ) is conjectured to be Θ(n 2−1/m). Our method also yields a bound on the number of K m,m -free graphs with fixed order and size, extending the result of Füredi. Using this bound, we prove a relaxed version of a conjecture due to Haxell, Kohayakawa, and Łuczak and show that almost all K 3,3-free graphs of order n have more than 1/20·ex(n,K 3,3) edges.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. Balogh, B. Bollobás and M. Simonovits: The fine structure of octahedron-free graphs, Journal of Combinatorial Theory B 101(2) (2011), 67–84.

    Article  MATH  Google Scholar 

  2. [2]

    J. Balogh, B. Bollobás and M. Simonovits: The number of graphs without forbidden subgraphs, Journal of Combinatorial Theory B 91 (2004), 1–24.

    Article  MATH  Google Scholar 

  3. [3]

    J. Balogh, B. Bollobás and M. Simonovits: The typical structure ofgraphs without given excluded subgraphs, Random Structures and Algorithms 34 (2009), 305–318.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    J. Balogh and W. Samotij: Almost all C 4-free graphs have fewer than (1−ɛ) · ex(n,C 4) edges, SIAM Journal on Discrete Mathematics 24(3) (2010), 1011–1018.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    J. Balogh and W. Samotij: The number of K s,t-free graphs, Journal of the London Mathematical Society Advance Access published February 1, 2011, doi:10.1112/ jlms/jdq086.

  6. [6]

    J. Bondy: A Collection of Open Problems, in: Combinatorial Mathematics: Proceedings of the Third International Conference, New York Academy of Sciences, 1989, pp. 429–434.

  7. [7]

    W. Brown: On graphs that do not contain a Thomsen graph, Canadian Mathematical Bulletin 9 (1966), 281–285.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    F. Chung: Open problems of Paul Erdős in graph theory, Journal of Graph Theory 25 (1997), 3–36.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    D. Conlon and T. Gowers: Combinatorial theorems in sparse random sets, manuscript.

  10. [10]

    P. Erdős, P. Frankl and V. Rödl: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combinatorics 2 (1986), 113–121.

    MathSciNet  Article  Google Scholar 

  11. [11]

    P. Erdős, D. Kleitman and B. Rothschild: Asymptotic enumeration of K n-free graphs, in: Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, Atti dei Convegni Lincei No. 17, Accad. Naz. Lincei, 1976, pp. 19–27.

  12. [12]

    P. Erdős and A. Stone: On the structure of linear graphs, Bulletin of the American Mathematical Society 52 (1946), 1087–1091.

    MathSciNet  Article  Google Scholar 

  13. [13]

    Z. Füredi: Random Ramsey graphs for the four-cycle, Discrete Mathematics 126 (1994), 407–410.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    Z. Füredi: An upper bound on Zarankiewicz’ problem, Combinatorics, Probability and Computing 5 (1996), 29–33.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    P. Haxell, Y. Kohayakawa and T. Łuczak: Turán’s extremal problem in random graphs: forbidding even cycles; Journal of Combinatorial Theory B 64 (1995), 273–287.

    Article  MATH  Google Scholar 

  16. [16]

    D. Kleitman and D. Wilson: On the number of graphs which lack small cycles, manuscript, 1996.

  17. [17]

    D. Kleitman and K. Winston: On the number of graphs without 4-cycles, Discrete Mathematics 41 (1982), 167–172.

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    Y. Kohayakawa, B. Kreuter and A. Steger: An extremal problem for random graphs and the number of graphs with large even-girth, Combinatorica 18(1) (1998), 101–120.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    P. Kolaitis, H. Prömel and B. Rothschild: K l+1-free graphs: asymptotic structure and a 0–1 law; Transactions of the American Mathematical Society 303 (1987), 637–671.

    MathSciNet  MATH  Google Scholar 

  20. [20]

    T. Kővári, V. T. Sós and P. Turán: On a problem of K. Zarankiewicz, Colloquium Mathematicum 3 (1954), 50–57.

    Google Scholar 

  21. [21]

    M. Mitzenmacher and E. Upfal: Probability and Computing: Randomized Algorithms and Probabilistic Analysis; Cambridge University Press, 2005.

  22. [22]

    H. Prömel, A. Steger and A. Taraz: Asymptotic enumeration, global structure, and constrained evolution; Discrete Mathematics 229 (2001), 213–233.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    M. Schacht: Extremal results for random discrete structures, manuscript.

  24. [24]

    P. Turán: Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to József Balogh.

Additional information

This material is based upon work supported by NSF CAREER Grant DMS-0745185, UIUC Campus Research Board Grant 09072, and OTKA Grant K76099.

Research supported in part by the Trijtzinsky Fellowship and the James D. Hogan Memorial Scholarship Fund.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balogh, J., Samotij, W. The number of K m,m -free graphs. Combinatorica 31, 131 (2011). https://doi.org/10.1007/s00493-011-2610-y

Download citation

Mathematics Subject Classification (2000)

  • 05C35
  • 05C30
  • 05D40
  • 05A16