Poset limits and exchangeable random posets

Abstract

We develop a theory of limits of finite posets in close analogy to the recent theory of graph limits. In particular, we study representations of the limits by functions of two variables on a probability space, and connections to exchangeable random infinite posets.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    D. Aldous: Representations for partially exchangeable arrays of random variables, J. Multivar. Anal. 11 (1981), 581–598.

    Article  MATH  MathSciNet  Google Scholar 

  2. [2]

    T. Austin: On exchangeable random variables and the statistics of large graphs and hypergraphs, Probab. Surv. 5 (2008), 80–145.

    Article  MATH  MathSciNet  Google Scholar 

  3. [3]

    B. Bollobás, S. Janson and O. Riordan: The cut metric, random graphs, and branching processes, Journal of Statistical Physics 140(2) (2010), 289–335

    Article  MATH  MathSciNet  Google Scholar 

  4. [4]

    B. Bollobás and O. Riordan: Metrics for sparse graphs, Surveys in Combinatorics 2009, LMS Lecture Notes Series 365, Cambidge Univ. Press, 2009, 211–287.

  5. [5]

    C. Borgs, J. T. Chayes and L. Lovász: Moments of two-variable functions and the uniqueness of graph limits, Geom. Funct. Anal. 19 (2010), no. 6, 1597–1619.

    Article  MATH  MathSciNet  Google Scholar 

  6. [6]

    C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi: Convergent sequences of dense graphs, I. Subgraph frequencies, metric properties and testing, Adv. Math. 219 (2008), no. 6, 1801–1851.

    Article  MATH  MathSciNet  Google Scholar 

  7. [7]

    C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi: Convergent sequences of dense graphs II: Multiway cuts and statistical physics, Preprint, 2007, http://research.microsoft.com/borgs/

  8. [8]

    G. Brightwell and N. Georgiou: Continuum limits for classical sequential growth models, Random Structures Algorithms 36 (2010), no. 2, 218–250.

    MATH  MathSciNet  Google Scholar 

  9. [9]

    P. Diaconis, S. Holmes and S. Janson: Interval graph limits, Preprint, 2011, arXiv:1102.2841v1.

  10. [10]

    P. Diaconis and S. Janson: Graph limits and exchangeable random graphs, Rendiconti di Matematica 28 (2008), 33–61.

    MATH  MathSciNet  Google Scholar 

  11. [11]

    G. Elek and B. Szegedy: Limits of hypergraphs, removal and regularity lemmas. A non-standard approach, arXiv:0705.2179v1.

  12. [12]

    A. Frieze and R. Kannan: Quick approximation to matrices and applications, Combinatorica 19 (1999), 175–220.

    Article  MATH  MathSciNet  Google Scholar 

  13. [13]

    D. Hoover: Relations on Probability Spaces and Arrays of Random Variables, Preprint, Institute for Advanced Study, Princeton, NJ, 1979.

    Google Scholar 

  14. [14]

    S. Janson: Poset limits and exchangeable random posets, preprint version of the present paper, arXiv:0902.0306v1.

  15. [15]

    S. Janson: Graphons, cut norm and distance, couplings and rearrangements, preprint, 2010–2011. arXiv:1009.2376v3.

  16. [16]

    S. Janson: Limits of interval orders and semiorders, preprint, 2011, arXiv:1104.1264v1.

  17. [17]

    O. Kallenberg: Foundations of Modern Probability, 2nd ed., Springer, New York, 2002.

    Google Scholar 

  18. [18]

    O. Kallenberg: Probabilistic Symmetries and Invariance Principles, Springer, New York, 2005.

    Google Scholar 

  19. [19]

    L. Lovász and B. Szegedy: Limits of dense graph sequences, J. Comb. Theory B 96 (2006), 933–957.

    Article  MATH  Google Scholar 

  20. [20]

    L. Lovász and B. Szegedy: Szemerédi’s lemma for the analyst, Geom. Funct. Anal. 17 (2007), no. 1, 252–270.

    Article  MATH  MathSciNet  Google Scholar 

  21. [21]

    K. R. Parthasarathy: Probability Measures on Metric Spaces, Academic Press, New York, 1967.

    Google Scholar 

  22. [22]

    B. Pittel and R. Tungol: A phase transition phenomenon in a random directed acyclic graph, Random Struct. Alg. 18 (2001), no. 2, 164–184.

    Article  MATH  MathSciNet  Google Scholar 

  23. [23]

    E. M. Stein: Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970.

    Google Scholar 

  24. [24]

    T. Tao: A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma, J. Anal. Math. 103 (2007), 1–45.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Svante Janson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janson, S. Poset limits and exchangeable random posets. Combinatorica 31, 529–563 (2011). https://doi.org/10.1007/s00493-011-2591-x

Download citation

Mathematics Subject Classification (2000)

  • 06A06
  • 05C99
  • 60C05