The unbounded-error communication complexity of symmetric functions

Abstract

We prove an essentially tight lower bound on the unbounded-error communication complexity of every symmetric function, i.e., f(x,y)=D(|xy|), where D: {0,1,…,n}→{0,1} is a given predicate and x,y range over {0,1}n. Specifically, we show that the communication complexity of f is between Θ(k/log5 n) and Θ(k logn), where k is the number of value changes of D in {0,1,…, n}. Prior to this work, the problem was solved only for the parity predicate D (Forster 2001).

Our proof is built around two new ideas. First, we show that a predicate D gives rise to a rapidly mixing random walk on ℤ n2 , which allows us to reduce the problem to communication lower bounds for “typical” predicates. Second, we use Paturi’s approximation lower bounds (1992), suitably generalized here to clusters of real nodes in [0,n] and interpreted in their dual form, to prove that a typical predicate behaves analogous to the parity predicate with respect to a smooth distribution on the inputs.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Alon, P. Frankl and V. Rödl: Geometrical realization of set systems and probabilistic communication complexity, in Proc. of the 26th Symposium on Foundations of Computer Science (FOCS), 277–280, 1985.

  2. [2]

    J. Aspnes, R. Beigel, M. L. Furst and S. Rudich: The expressive power of voting polynomials, Combinatorica 14(2) (1994), 135–148.

    Article  MATH  MathSciNet  Google Scholar 

  3. [3]

    L. Babai, P. Frankl and J. Simon: Complexity classes in communication complexity theory, in Proc. of the 27th Symposium on Foundations of Computer Science (FOCS), 337–347, 1986.

  4. [4]

    Z. Bar-Yossef, T. S. Jayram, R. Kumar and D. Sivakumar: An information statistics approach to data stream and communication complexity, J. Comput. Syst. Sci. 68(4) (2004) 702–732.

    Article  MATH  MathSciNet  Google Scholar 

  5. [5]

    H. Buhrman, N. K. Vereshchagin and R. de Wolf: On computation and communication with small bias, in Proc. of the 22nd Conf. on Computational Complexity (CCC), 24–32, 2007.

  6. [6]

    V. Feldman, P. Gopalan, S. Khot and A. K. Ponnuswami: New results for learning noisy parities and halfspaces, in Proceedings of the 47th Annual Symposium on Foundations of Computer Science (FOCS), 563–574, 2006.

  7. [7]

    J. Forster: A linear lower bound on the unbounded error probabilistic communication complexity. J. Comput. Syst. Sci., 65(4) (2002), 612–625.

    Article  MATH  MathSciNet  Google Scholar 

  8. [8]

    J. Forster, M. Krause, S. V. Lokam, R. Mubarakzjanov, N. Schmitt and H.-U. Simon: Relations between communication complexity, linear arrangements computational complexity, in Proc. of the 21st Conf. on Foundations of Software Technology and Theoretical Computer Science (FST TCS), 171–182, 2001.

  9. [9]

    J. Forster and H. U. Simon: On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes, Theor. Comput. Sci., 350(1) (2006), 40–48.

    Article  MATH  MathSciNet  Google Scholar 

  10. [10]

    M. Goldmann, J. Håstad and A. A. Razborov: Majority gates vs. general weighted threshold gates, Computational Complexity, 2 (1992), 277–300.

    Article  MATH  MathSciNet  Google Scholar 

  11. [11]

    A. Hajnal, W. Maass, P. Pudlák, M. Szegedy and G. Turán: Threshold circuits of bounded depth, J. Comput. Syst. Sci., 46(2) (1993), 129–154.

    Article  MATH  Google Scholar 

  12. [12]

    S. Jukna: Extremal combinatorics with applications in computer science, Springer-Verlag, Berlin, 2001.

    Google Scholar 

  13. [13]

    B. Kalyanasundaram and G. Schnitger: The probabilistic communication complexity of set intersection. SIAM J. Discrete Math., 5(4) (1992), 545–557.

    Article  MATH  MathSciNet  Google Scholar 

  14. [14]

    B. S. Kashin and A. A. Razborov: Improved lower bounds on the rigidity of Hadamard matrices, Matematicheskie zametki, 63(4) (1998), 535–540. In Russian.

    MathSciNet  Google Scholar 

  15. [15]

    M. Kearns and L. Valiant: Cryptographic limitations on learning Boolean formulae and finite automata, J. ACM, 41(1) (1994), 67–95.

    Article  MATH  MathSciNet  Google Scholar 

  16. [16]

    M. Kharitonov: Cryptographic hardness of distribution-specific learning, in Proc. of the 25th Symposium on Theory of Computing, 372–381, 1993.

  17. [17]

    H. Klauck, R. Špalek and R. de Wolf: Quantum and classical strong direct product theorems and optimal time-space tradeoffs, SIAM J. Comput., 36(5) (2007), 1472–1493.

    Article  MATH  Google Scholar 

  18. [18]

    A. R. Klivans and R. A. Servedio: Learning DNF in time \(2^{\tilde O(n^{1/3} )}\), J. Comput. Syst. Sci., 68(2) (2004), 303–318.

    Article  MATH  MathSciNet  Google Scholar 

  19. [19]

    A. R. Klivans and A. A. Sherstov: A lower bound for agnostically learning disjunctions, in Proc. of the 20th Conf. on Learning Theory (COLT), 409–423, 2007.

  20. [20]

    A. R. Klivans and A. A. Sherstov: Unconditional lower bounds for learning intersections of halfspaces, Machine Learning, 69(2–3) (2007), 97–114.

    Article  Google Scholar 

  21. [21]

    A. R. Klivans and A. A. Sherstov: Cryptographic hardness for learning intersections of halfspaces, J. Comput. Syst. Sci., 75(1) (2009), 2–12.

    Article  MATH  MathSciNet  Google Scholar 

  22. [22]

    E. Kushilevitz and N. Nisan: Communication complexity, Cambridge University Press, New York, 1997.

    Google Scholar 

  23. [23]

    S. V. Lokam: Spectral methods for matrix rigidity with applications to size-depth trade-offs and communication complexity, J. Comput. Syst. Sci., 63(3) (2001), 449–473.

    Article  MATH  MathSciNet  Google Scholar 

  24. [24]

    M. L. Minsky and S. A. Papert: Perceptrons: An Introduction to Computational Geometry, MIT Press, Cambridge, Mass., 1969.

    Google Scholar 

  25. [25]

    I. Newman: Private vs. common random bits in communication complexity, Inf. Process. Lett., 39(2) (1991), 67–71.

    Article  MATH  Google Scholar 

  26. [26]

    N. Nisan: The communication complexity of threshold gates, in Combinatorics, Paul Erdős is Eighty, 301–315, 1993.

  27. [27]

    R. Paturi: On the degree of polynomials that approximate symmetric Boolean functions, in Proc. of the 24th Symposium on Theory of Computing (STOC), 468–474, 1992.

  28. [28]

    R. Paturi and J. Simon: Probabilistic communication complexity. J. Comput. Syst. Sci., 33(1) (1986), 106–123.

    Article  MATH  MathSciNet  Google Scholar 

  29. [29]

    R. Raz: Fourier analysis for probabilistic communication complexity, Comput. Complex., 5(3/4) (1995), 205–221.

    Article  MATH  MathSciNet  Google Scholar 

  30. [30]

    A. A. Razborov: Bounded-depth formulae over the basis {&,⊕} and some combinatorial problems, Complexity Theory and Applied Mathematical Logic, vol. “Problems of Cybernetics” (1988), 146–166. In Russian.

  31. [31]

    A. A. Razborov: On the distributional complexity of disjointness, Theor. Comput. Sci., 106(2) (1992), 385–390.

    Article  MATH  MathSciNet  Google Scholar 

  32. [32]

    A. A. Razborov: Quantum communication complexity of symmetric predicates, Izvestiya: Mathematics, 67(1) (2003), 145–159.

    Article  MATH  MathSciNet  Google Scholar 

  33. [33]

    A. A. Razborov and A. A. Sherstov: The sign-rank of AC0, in Proc. of the 49th Symposium on Foundations of Computer Science (FOCS), 57–66, 2008.

  34. [34]

    T. J. Rivlin: An Introduction to the Approximation of Functions, Dover Publications, New York, 1981.

    Google Scholar 

  35. [35]

    A. A. Sherstov: Powering requires threshold depth 3, Inf. Process. Lett., 102(2–3) (2007), 104–107.

    Article  MATH  MathSciNet  Google Scholar 

  36. [36]

    A. A. Sherstov: Halfspace matrices. Comput. Complex., 17(2) (2008), 149–178. Preliminary version in 22nd CCC, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  37. [37]

    A. A. Sherstov: The pattern matrix method, SIAM J. Comput., 2010, To appear. Preliminary version in 40th STOC, 2008.

  38. [38]

    A. A. Sherstov: Separating AC0 from depth-2 majority circuits, SIAM J. Comput., 38(6) (2009), 2113–2129. Preliminary version in 39th STOC, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  39. [39]

    Y. Shi and Y. Zhu: Quantum communication complexity of block-composed functions, Quantum Information & Computation, 9(5–6) (2009), 444–460.

    MATH  MathSciNet  Google Scholar 

  40. [40]

    L. G. Valiant: A theory of the learnable, Commun. ACM, 27(11) (1984), 1134–1142.

    Article  MATH  Google Scholar 

  41. [41]

    R. de Wolf: Quantum computing and communication complexity, PhD thesis, University of Amsterdam, 2001.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Sherstov.

Additional information

An extended abstract of this article appeared in Proceedings of the 49th IEEE Symposium on Foundations of Computer Science (FOCS), pages 384–393, 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sherstov, A.A. The unbounded-error communication complexity of symmetric functions. Combinatorica 31, 583–614 (2011). https://doi.org/10.1007/s00493-011-2580-0

Download citation

Mathematics Subject Classification (2000)

  • 03D15
  • 68Q17