On planarity of compact, locally connected, metric spaces

An Erratum/Original Paper to this article was published on 04 February 2014

Abstract

Independently, Claytor [Ann. Math. 35 (1934), 809–835] and Thomassen [Combinatorica 24 (2004), 699–718] proved that a 2-connected, compact, locally connected metric space is homeomorphic to a subset of the sphere if and only if it does not contain K 5 or K 3;3. The “thumbtack space” consisting of a disc plus an arc attaching just at the centre of the disc shows the assumption of 2-connectedness cannot be dropped. In this work, we introduce “generalized thumbtacks” and show that a compact, locally connected metric space is homeomorphic to a subset of the sphere if and only if it does not contain K 5, K 3;3, or any generalized thumbtack, or the disjoint union of a sphere and a point.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S. Claytor: Topological immersion of Peanian continua in a spherical surface, Ann. Math. 35(4) (1934), 809–835.

    MathSciNet  Article  Google Scholar 

  2. [2]

    R. Halin and H.A. Jung: Charakterisierung der komplexe der ebene und der 2-Sphäre, Arch. Math. 15 (1964), 466–469.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    K. Kuratowski: Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271–283.

    MATH  Google Scholar 

  4. [4]

    B. Mohar and C. Thomassen: Graphs on Surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001.

    Google Scholar 

  5. [5]

    R.B. Richter and C. Thomassen: 3-connected planar spaces uniquely embed in the sphere, Trans. Amer. Math. Soc. 354(11) (2002), 4585–4595.

    MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    C. Thomassen: The locally connected compact metric spaces embeddable in the plane, Combinatorica 24(4) (2004), 699–718.

    MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    C. Thomassen: Classification of locally 2-connected compact metric spaces, Combinatorica 25(1) (2005), 85–103.

    MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    W.T. Tutte: Connectivity in Graphs, Oxford University Press, London 1966.

    MATH  Google Scholar 

  9. [9]

    W.T. Tutte: Graph Theory, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  10. [10]

    H.-J. Voss: Cycles and Bridges in Graphs, Kluwer, Dordrecht, 1991.

    MATH  Google Scholar 

  11. [11]

    K. Wagner: Fastpläattbare Graphen, J. Combin. Theory 3 (1967), 326–365.

    MATH  Article  Google Scholar 

  12. [12]

    G.T. Whyburn: Cut points in general topological spaces, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 380–387.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Bruce Richter.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00493-014-2967-9.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richter, R.B., Rooney, B. & Thomassen, C. On planarity of compact, locally connected, metric spaces. Combinatorica 31, 365 (2011). https://doi.org/10.1007/s00493-011-2563-1

Download citation

Mathematics Subject Classification (2000)

  • 05C10
  • 57M15