Monochromatic integers adding to polynomials of prime variables

Abstract

We extend a recent result of Khalfalah and Szemerédi to the polynomials of prime variables.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. Bourgain: On Λ(p)-subsets of squares, Israel J. Math. 67 (1989), 291–311.

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    J. Bourgain: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I: Schrödinger equations; Geom. Funct. Anal. 3 (1993), 107–156.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    P. Erdős and A. Sárközy: On differences and sums of integers II, Bull. Greek Math. Society 18 (1977), 204–223.

    Google Scholar 

  4. [4]

    H. Furstenberg: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetical progressions, J. d’Analyse Math. 31 (1977), 204–256.

    MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    B. Green: Roth’s theorem in the primes, Ann. Math. 161 (2005), 1609–1636.

    MATH  Article  Google Scholar 

  6. [6]

    B. Green and T. Tao: The primes contain arbitrarily long arithmetic progressions, Ann. Math. 167 (2008), 481–547.

    MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    A. Khalfalah and E. Szemerédi: On the number of monochromatic solutions of x+y=z 2, Combinatorics, Probability and Computing 15 (2006), 213–227.

    MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    H. Li and H. Pan: A density version of Vinogradov’s three primes theorem, Forum Math. 22(4) (2010), 699–714

    MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    H. Li and H. Pan: Difference sets and polynomials of prime variables, Acta Arith. 138 (2009), 25–52.

    MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    A. Sárközy: On difference sets of sequences on integers I, Acta Math. Acad. Sci. Hungar. 31 (1978), 125–149.

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    A. Sárközy: On difference sets of sequences on integers III, Acta Math. Acad. Sci. Hungar. 31(1978), 355–386.

    MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    T. Tao: Some highlights of arithmetic combinatorics, Lecture notes 4: Behrend’s example; Bourgain’s refinement of Roth’s theorem, available at: http://www.math.ucla.edu/~tao/254a.1.03w/notes5.dvi.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongze Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 10771135), and the second author was supported by the National Natural Science Foundation for Youths in China (No. 10901078). The second author is the corresponding author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, H., Pan, H. Monochromatic integers adding to polynomials of prime variables. Combinatorica 31, 67 (2011). https://doi.org/10.1007/s00493-011-2531-9

Download citation

Mathematics Subject Classification (2000)

  • 11P32
  • 05D99
  • 11P55