Chevalley’s theorem with restricted variables


First, a generalization of Chevalley’s classical theorem from 1936 on polynomial equations f(x 1,...,x N ) = 0 over a finite field K is given, where the variables x i are restricted to arbitrary subsets A i K. The proof uses Alon’s Nullstellensatz. Next, a theorem on integer polynomial congruences f(x 1,...,x N ) ≡ 0 (mod p v) with restricted variables is proved, which generalizes a more recent result of Schanuel. Finally, an extension of Olson’s theorem on zero-sum sequences in finite Abelian p-groups is derived as a corollary.

This is a preview of subscription content, log in to check access.


  1. [1]

    N. Alon: Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999), 7–29.

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    C. Chevalley: Démonstration d’une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg 11 (1936), 73–75.

    Article  Google Scholar 

  3. [3]

    J. E. Olson: A combinatorial problem on finite abelian groups I, J. Number Theory 1 (1969), 8–10.

    MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    S. H. Schanuel: An extension of Chevalley’s theorem to congruences modulo prime powers, J. Number Theory 6 (1974), 284–290.

    MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    E. Warning: Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Univ. Hamburg 11 (1936), 76–83.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to David Brink.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brink, D. Chevalley’s theorem with restricted variables. Combinatorica 31, 127 (2011).

Download citation

Mathematics Subject Classification (2000)

  • 11D79
  • 20K01