Abstract
We show that the topological cycle space of a locally finite graph is a canonical quotient of the first singular homology group of its Freudenthal compactification, and we characterize the graphs for which the two coincide. We construct a new singular-type homology for non-compact spaces with ends, which in dimension 1 captures precisely the topological cycle space of graphs but works in any dimension.
This is a preview of subscription content, access via your institution.
References
- [1]
H. Abels and P. Strantzalos: Proper transformation groups, in preparation.
- [2]
H.-J. Baues and A. Quintero: Infinite Homotopy Theory, Kluwer Academic Publ., 2001.
- [3]
H. Bruhn: The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits, J. Combin. Theory (Series B) 92 (2004), 235–256.
- [4]
H. Bruhn and R. Diestel: Duality in infinite graphs, Comb., Probab. Comput. 15 (2006), 75–90.
- [5]
H. Bruhn, R. Diestel and M. Stein: Cycle-cocycle partitions and faithful cycle covers for locally finite graphs, J. Graph Theory 50 (2005), 150–161.
- [6]
H. Bruhn and A. Georgakopoulos: Bases and closures with infinite sums, preprint, 2006.
- [7]
H. Bruhn and M. Stein: On end degrees and infinite circuits in locally finite graphs, Combinatorica 27(3) (2007), 269–291.
- [8]
H. Bruhn and M. Stein: MacLane’s planarity criterion for locally finite graphs, J. Combin. Theory (Series B) 96 (2006), 225–239.
- [9]
J. W. Cannon and G. R. Conner: The combinatorial structure of the Hawaiian Earring group, Topology Appl. 106 (2000), 225–271.
- [10]
R. Diestel: The cycle space of an infinite graph, Comb., Probab. Comput. 14 (2005), 59–79.
- [11]
R. Diestel: Graph Theory (3rd edition), Springer-Verlag, 2005, Electronic edition available at: http://diestel-graph-theory.com
- [12]
R. Diestel: Locally finite graphs with ends: a topological approach; Hamburger Beitr. Math. 340 (2009), see: http://preprint.math.uni-hamburg.de/public/hbm.html
- [13]
R. Diestel and D. Kühn: Graph-theoretical versus topological ends of graphs, J. Combin. Theory (Series B) 87 (2003), 197–206.
- [14]
R. Diestel and D. Kühn: On infinite cycles I, Combinatorica 24(1) (2004), 68–89.
- [15]
R. Diestel and D. Kühn: On infinite cycles II, Combinatorica 24(1) (2004), 91–116.
- [16]
R. Diestel and D. Kühn: Topological paths, cycles and spanning trees in infinite graphs, Europ. J. Combinatorics 25 (2004), 835–862.
- [17]
R. Diestel and I. Leader: A proof of the Bounded Graph Conjecture, Invent. math. 108 (1992), 131–162.
- [18]
R. Diestel and I. Leader: Normal spanning trees, Aronszajn trees and excluded minors, J. London Math. Soc. 63 (2001), 16–32.
- [19]
R. Diestel and P. Sprüssel: The fundamental group of a locally finite graph with ends, Adv. Math. (2010), doi:10.1016/j.aim.2010.09.008.
- [20]
R. Diestel and P. Sprüssel: On the homology of locally finite graphs, Hamburger Beitr. Math. 277 (2007), see: http://preprint.math.uni-hamburg.de/public/hbm.html
- [21]
R. Diestel and P. Sprüssel: On the homology of non-compact spaces with ends, preprint, 2009.
- [22]
H. Freudenthal: Über die Enden topologischer Räume und Gruppen, Math. Zeitschr. 33 (1931), 692–713.
- [23]
H. Freudenthal: Neuaufbau der Endentheorie, Annals of Mathematics 43 (1942), 261–279.
- [24]
D. B. Fuchs and O. Ya. Viro: Topology II, Springer-Verlag, 2004.
- [25]
A. Georgakopoulos: Infinite Hamilton cycles in squares of locally finite graphs, Adv. Math. 220(3) (2009), 670–705.
- [26]
A. Georgakopoulos and P. Sprüssel: Geodesic topological cycles in locally finite graphs, Electronic J. Comb. 16 (2009), #R144.
- [27]
R. Halin: Über unendliche Wege in Graphen, Math. Annalen 157 (1964), 125–137.
- [28]
D. W. Hall and G. L. Spencer: Elementary topology, John Wiley, New York, 1955.
- [29]
A. Hatcher: Algebraic Topology, Cambrigde Univ. Press, 2002.
- [30]
B. Hughes and A. Ranicki: Ends of complexes, Cambrigde Univ. Press, 1996.
- [31]
H. A. Jung: Wurzelbäume und unendliche Wege in Graphen, Math. Nachr. 41 (1969), 1–22.
- [32]
H. A. Jung: Connectivity in infinite graphs, in: Studies in Pure Mathematics (L. Mirsky, ed.), pp. 137–143, Academic Press, 1971.
- [33]
B. Krön: End compactifications in non-locally-finite graphs, Math. Proc. Cambridge Phil. Soc. 131 (2001), 427–443.
- [34]
A. T. Lundell and S. Weingram: Topology of CW-complexes, Springer-Verlag, 1969.
- [35]
R. Möller: Ends of graphs, Math. Proc. Cambridge Phil. Soc. 111 (1992), 255–266.
- [36]
R. Möller: Ends of graphs II, Math. Proc. Cambridge Phil. Soc. 111 (1992), 455–460.
- [37]
M. Stein: Arboriticity and tree-packing in locally finite graphs, J. Combin. Theory (Series B) 96 (2006), 302–312.
- [38]
C. Thomassen and A. Vella: Graph-like continua, augmenting arcs, and Menger’s Theorem; Combinatorica 28(5) (2008), 595–623.
- [39]
C. Thomassen and W. Woess: Vertex-transitive graphs and accessibility, J. Combin. Theory (Series B) 58 (1993), 248–268.
- [40]
W. Woess: Random walks on infinite graphs and groups, Cambridge University Press, 2002.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Diestel, R., Sprüssel, P. The homology of a locally finite graph with ends. Combinatorica 30, 681 (2010). https://doi.org/10.1007/s00493-010-2481-7
Received:
Published:
Mathematics Subject Classification (2000)
- 05C63
- 55N10