Set systems without a simplex or a cluster

Abstract

A d-dimensional simplex is a collection of d+1 sets with empty intersection, every d of which have nonempty intersection. A k-uniform d-cluster is a collection of d+1 sets of size k with empty intersection and union of size at most 2k.

We prove the following result which simultaneously addresses an old conjecture of Chvátal [6] and a recent conjecture of the second author [28]. For d≥2 and ζ >0 there is a number T such that the following holds for sufficiently large n. Let G be a k-uniform set system on [n] ={1,…,n} with ζ n<k <n/2−T, and suppose either that G contains no d-dimensional simplex or that G contains no d-cluster. Then |G|≤\( \left( {\begin{array}{*{20}c} {n - 1} \\ {k - 1} \\ \end{array} } \right) \) with equality only for the family of all k-sets containing a specific element.

In the non-uniform setting we obtain the following exact result that generalises a question of Erdős and a result of Milner, who proved the case d=2. Suppose d≥2 and G is a set system on [n] that does not contain a d-dimensional simplex, with n sufficiently large. Then |G|≤2n−1 d−1i=0 \( \left( {\begin{array}{*{20}c} {n - 1} \\ i \\ \end{array} } \right) \), with equality only for the family consisting of all sets that either contain some specific element or have size at most d−1.

Each of these results is proved via the corresponding stability result, which gives structural information on any G whose size is close to maximum. These in turn rely on a stability theorem that we obtain using an earlier result of Frankl.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    R. Ahlswede and L. H. Khachatrian: The complete intersection theorem for systems of finite sets, European J. Combin.18 (1997), 125–136.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    R. P. Anstee and P. Keevash: Pairwise intersections and forbidden configurations, European J. Combin.27 (2006), 1235–1248.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    T. M. Apostol: An elementary view of Euler’s summation formula, Amer. Math. Monthly106 (1999), 409–418.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    J. Balogh, B. Bollobás and M. Simonovits: The number of graphs without forbidden subgraphs, J. Combin. Theory Ser. B91 (2004), 1–24.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    J. C. Bermond and P. Frankl: On a conjecture of Chvátal on m-intersecting hypergraphs, Bull. London Math. Soc.9 (1977), 310–312.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    V. Chvátal: An extremal set-intersection theorem, J. London Math. Soc.9 (1974/75), 355–359.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    R. Csákány and J. Kahn: A homological approach to two problems on finite sets, J. Algebraic Combin.9 (1999), 141–149.

    MATH  Article  MathSciNet  Google Scholar 

  8. [8]

    I. Dinur and E. Friedgut: Intersecting families are essentially contained in juntas, Combin. Probab. Comput.18(1–2) (2009), 107–122.

    MATH  Article  MathSciNet  Google Scholar 

  9. [9]

    I. Dinur and S. Safra: On the hardness of approximating minimum vertex cover, Ann. of Math. (2)162 (2005), 439–485.

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    P. Erdős: Topics in combinatorial analysis, in: Proc. Second Louisiana Conf. on Comb., Graph Theory and Computing (R. C. Mullin et al., eds.), pp. 2–20, Louisiana State Univ., Baton Rouge, 1971.

    Google Scholar 

  11. [11]

    P. Erdős, H. Ko and R. Rado: Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser.12 (1961), 313–320.

    Article  MathSciNet  Google Scholar 

  12. [12]

    P. Frankl: On Sperner families satisfying an additional condition, J. Combin. Theory Ser. A20 (1976), 1–11.

    MATH  Article  MathSciNet  Google Scholar 

  13. [13]

    P. Frankl: On a problem of Chvátal and Erdős on hypergraphs containing no generalized simplex, J. Combin. Theory Ser. A30 (1981), 169–182.

    MATH  Article  MathSciNet  Google Scholar 

  14. [14]

    P. Frankl: Erdős-Ko-Rado theorem with conditions on the maximal degree, J. Combin. Theory Ser. A46 (1987), 252–263.

    MATH  Article  MathSciNet  Google Scholar 

  15. [15]

    P. Frankl and Z. Füredi: A new generalization of the Erdős-Ko-Rado theorem, Combinatorica3(3–4) (1983), 341–349.

    MATH  Article  MathSciNet  Google Scholar 

  16. [16]

    P. Frankl and Z. Füredi: Exact solution of some Turán-type problems, J. Combin. Theory Ser. A45 (1987), 226–262.

    MATH  Article  MathSciNet  Google Scholar 

  17. [17]

    E. Friedgut: On the measure of intersecting families, uniqueness and stability; Combinatorica28(5) (2008), 503–528.

    MATH  Article  MathSciNet  Google Scholar 

  18. [18]

    Z. Füredi, O. Pikhurko and M. Simonovits: On Triple Systems with Independent Neighborhoods, Combin. Probab. Comput.14 (2005), 795–813.

    MATH  Article  MathSciNet  Google Scholar 

  19. [19]

    Z. Füredi, O. Pikhurko and M. Simonovits: 4-Books of three pages, J. Combin. Theory Ser. A113 (2006), 882–891.

    MATH  Article  MathSciNet  Google Scholar 

  20. [20]

    Z. Füredi and M. Simonovits: Triple systems not containing a Fano configuration, Combin. Probab. Comput.14 (2005), 467–484.

    MATH  Article  MathSciNet  Google Scholar 

  21. [21]

    A. J. W. Hilton and E. C. Milner: Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser.18 (1967), 369–384.

    MATH  Article  MathSciNet  Google Scholar 

  22. [22]

    S. Janson, T. Łuczak and A. Ruciński: Random Graphs, Wiley, (2000).

  23. [23]

    P. Keevash and D. Mubayi: Stability results for cancellative hypergraphs, J. Comb. Theory Ser. B92 (2004), 163–175.

    MATH  Article  MathSciNet  Google Scholar 

  24. [24]

    P. Keevash and B. Sudakov: The Turán number of the Fano plane, Combinatorica25(5) (2005), 561–574.

    MATH  Article  MathSciNet  Google Scholar 

  25. [25]

    P. Keevash and B. Sudakov: On a hypergraph Turán problem of Frankl, Combinatorica25(6) (2005), 673–706.

    MATH  Article  MathSciNet  Google Scholar 

  26. [26]

    D. Mubayi: Structure and Stability of Triangle-free set systems, Trans. Amer. Math. Soc.359 (2007), 275–291.

    MATH  Article  MathSciNet  Google Scholar 

  27. [27]

    D. Mubayi: An intersection theorem for four sets, Advances in Mathematics215(2) (2007), 601–615.

    MATH  Article  MathSciNet  Google Scholar 

  28. [28]

    D. Mubayi: Erdős-Ko-Rado for three sets, J. Combin. Theory Ser. A113 (2006), 547–550.

    MATH  Article  MathSciNet  Google Scholar 

  29. [29]

    D. Mubayi and O. Pikhurko: A new generalization of Mantel’s theorem to k-graphs, J. Combin. Theory Ser. B97(4) (2007), 669–678.

    MATH  Article  MathSciNet  Google Scholar 

  30. [30]

    D. Mubayi and J. Verstraëte: Proof of a conjecture of Erdős on triangles in setsystems, Combinatorica25(5) (2005), 599–614.

    MATH  Article  MathSciNet  Google Scholar 

  31. [31]

    D. Mubayi and J. Verstraëte: Minimal paths and cycles in set systems, European J. Combin.28(6) (2007), 1681–1693.

    MATH  Article  MathSciNet  Google Scholar 

  32. [32]

    O. Pikhurko: Exact computation of the hypergraph Turán function for expanded complete 2-graphs, accepted, J. Combin. Theory Ser. B (publication suspended for an indefinite time, see http://www.math.cmu.edu/~pikhurko/Copyright.html).

  33. [33]

    O. Pikhurko: An exact Turán result for the generalized triangle, Combinatorica28(2) (2008), 187–208.

    MATH  Article  MathSciNet  Google Scholar 

  34. [34]

    H. Robbins: A remark on Stirling’s formula, Amer. Math. Monthly62 (1955), 26–29.

    MATH  Article  MathSciNet  Google Scholar 

  35. [35]

    M. Simonovits: A method for solving extremal problems in graph theory, stability problems; in: 1968 Theory of Graphs (Proc. Colloq., Tihany, 1966), pp. 279–319, Academic Press, New York.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Keevash.

Additional information

Research supported in part by NSF grant DMS-0555755.

Research partially supported by National Science Foundation Grant DMS-0400812, and an Alfred P. Sloan Research Fellowship.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keevash, P., Mubayi, D. Set systems without a simplex or a cluster. Combinatorica 30, 175–200 (2010). https://doi.org/10.1007/s00493-010-2401-x

Download citation

Mathematics Subject Classification (2000)

  • 05C35
  • 05C65
  • 05D05