Structure of large incomplete sets in abelian groups


Let G be a finite abelian group and A be a subset of G. We say that A is complete if every element of G can be represented as a sum of different elements of A. In this paper, we study the following question

What is the structure of a large incomplete set?

We show that such a set is essentially contained in a maximal subgroup. As a co-product, we obtain a new proof for several earlier results, including a new proof for Diderrich’s conjecture in large groups.

This is a preview of subscription content, access via your institution.


  1. [1]

    P. Erdős: On the representation of large interges as sums of distinct summands taken from a fixed set, Acta Arith.7 (1962), 345–354.

    MathSciNet  Google Scholar 

  2. [2]

    P. Erdős and H. Heilbronn: On the addition of residue classes mod p, Acta Arith.9 (1964), 149–159.

    MathSciNet  Google Scholar 

  3. [3]

    D. da Silva and Y. O. Hamidoune: Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc.26(2) (1994), 140–146.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    J.-M. Deshouillers: Lower bound concerning subset sum wich do not cover all the residues modulo p, Hardy-Ramanujan Journal28 (2005), 30–34.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    J.-M. Deshouillers and G. A. Freiman: When subset-sums do not cover all the residues modulo p, J. Nomber Theory104 (2004), 255–262.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    G. T. Diderrich: An addition theorem for abelian groups of order pq, J. Number Theory7 (1975), 33–48.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    G. T. Diderrich and H. B. Mann: Combinatorial problems in finite Abelian groups, Survey of Combinatorial Theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971), pp. 95–100. North-Holland, Amsterdam, 1973.

    Google Scholar 

  8. [8]

    W. Gao and Y. O. Hamidoune: On additive bases, Acta Arith.88(3) (1999), 233–237.

    MATH  MathSciNet  Google Scholar 

  9. [9]

    W. Gao, Y. O. Hamidoune, A. Lladó and O. Serra: Covering a finite abelian group by subset sums, Combinatorica23(4) (2003), 599–611.

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    H. B. Mann and Y. F. Wou: An addition theorem for the elementary abelian group of type (p,p), Monatsh. Math.102(4) (1986), 273–308.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    H. H. Nguyen, E. Szemerédi and V. H. Vu: Subset sums modulo a prime, Acta Arith.131(4) (2008), 303–316.

    MATH  Article  MathSciNet  Google Scholar 

  12. [12]

    J. E. Olson: Sums of sets of group elements, Acta Arith.28(2) (1975/76), 147–156.

    MATH  MathSciNet  Google Scholar 

  13. [13]

    J. E. Olson: An addition theorem modulo p, J. Combin. Theory5 (1968), 45–52.

    MATH  Article  MathSciNet  Google Scholar 

  14. [14]

    E. Szemerédi: On a conjecture of Erdős and Heilbronn, Acta Arith.17 (1970), 227–229.

    MATH  MathSciNet  Google Scholar 

  15. [15]

    T. Tao and V. H. Vu: Additive Combinatorics, Cambridge Univ. Press, 2006.

Download references

Author information



Corresponding author

Correspondence to H. Van Vu.

Additional information

The author is supported by NSF grant DMS-0901216 and by DoD grant AFOSARFA-9550-09-1-0167.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Vu, H. Structure of large incomplete sets in abelian groups. Combinatorica 30, 225–237 (2010).

Download citation

Mathematics Subject Classification (2000)

  • 11P70
  • 05D99