Abstract
In this paper we generalize a result of Benson to all finite generalized polygons. In particular, given a collineation θ of a finite generalized polygon S, we obtain a relation between the parameters of S and, for various natural numbers i, the number of points x which are mapped to a point at distance i from x by θ. As a special case we consider generalized 2n-gons of order (1, t) and determine, in the generic case, the exact number of absolute points of a given duality of the underlying generalized n-gon of order t.
This is a preview of subscription content, access via your institution.
References
- [1]
C. T. Benson: On the structure of generalized quadrangles, J. Algebra15 (1970), 443–454.
- [2]
A. E. Brouwer, A. M. Cohen and A. Neumaier: Distance-Regular Graphs, Ergeb. Math. Grenzgeb. (3) 18, Springer-Verlag, Berlin, 1989.
- [3]
P. J. Cameron, J. A. Thas and S. E. Payne: Polarities of generalized hexagons and perfect codes, Geom. Dedicata5 (1976), 525–528.
- [4]
J. De Kaey and H. Van Maldeghem: A characterization of the split Cayley generalized hexagon H(q) using one subhexagon of order (1, q), Discr. Math.294 (2005), 109–118.
- [5]
A. De Wispelaere and H. Van Maldeghem: Regular partitions of (weak) finite generalized polygons, Designs, Codes and Crypt.47(1–3) (2008), 53–73.
- [6]
W. Feit and D. Higman: The nonexistence of certain generalized polygons, J. Algebra1 (1964), 114–131.
- [7]
J. B. Fraleigh: A First Course in Abstract Algebra, Addison-Wesley, 1994.
- [8]
A. Offer: On the order of a generalized hexagon admitting an ovoid or spread, J. Combin. Theory Ser. A97 (2002), 184–186.
- [9]
S. E. Payne and J. A. Thas: Finite Generalized Quadrangles, Research Notes in Mathematics 110, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1984.
- [10]
Cs. Schneider and H. Van Maldeghem: Primitive flag-transitive generalized hexagons and octagons, J. Combin. Theory Ser. A115(8) (2008), 1436–1455.
- [11]
J. A. Thas: A restriction on the parameters of a subhexagon, J. Combin. Theory Ser. A21 (1976), 115–117.
- [12]
J. A. Thas: Generalized polygons, in: Handbook of Incidence Geometry, Buildings and Foundations (F. Buekenhout, ed.), Chapter 9, North-Holland, 383–431.
- [13]
J. Tits: Sur la trialité et certains groupes qui s’en déduisent, Inst. Hautes Études Sci. Publ. Math.2 (1959), 13–60.
- [14]
J. Tits: Classification of buildings of spherical type and Moufang polygons: a survey; in: Coll. Intern. Teorie Combin. Acc. Naz. Lincei, Proceedings; Roma 1973, Atti dei convegni Lincei17 (1976), 229–246.
- [15]
H. Van Maldeghem: Generalized Polygons, Birkhäuser Verlag, Basel, Boston, Berlin, Monographs in Mathematics93, 1998.
Author information
Affiliations
Corresponding author
Additional information
Research supported by the Fund for Scientific Research — Flanders (FWO — Vlaanderen).
Rights and permissions
About this article
Cite this article
Temmermans, B., Thas, J.A. & Van Maldeghem, H. On collineations and dualities of finite generalized polygons. Combinatorica 29, 569–594 (2009). https://doi.org/10.1007/s00493-009-2435-0
Received:
Published:
Issue Date:
Mathematics Subject Classification (2000)
- 51E12