Skip to main content
Log in

Tilings of the integers can have superpolynomial periods

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Let A be a finite set of integers. We say that A tiles the integers if there is a set T ⊆ ℤ such that {t+A: tT{ forms a disjoint partition of the integers. It has long been known that such a set T must be periodic. The question is to determine how long the period of T can become as a function of the diameter of the set A. The previous best lower bound, due to Kolountzakis [7], shows that the period of T can grow as fast as the square of the diameter of A. In this paper we improve Kolountzakis’ lower bound by showing that the period of T can in fact grow faster than any power of the diameter of A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. Bíró: Divisibility of integer polynomials and tilings of the integers, Acta Arithmetica118 (2005), 117–127.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. G. de Bruijn: On the factorization of cyclic groups, Indag. Math. 15 (1953), 370–377.

    Google Scholar 

  3. E. M. Coven and A. Meyerowitz: Tiling the integers with translates of one finite set, J. Algebra212(1) (1999), 161–174.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Granville, I. Laba and Y. Wang: On finite sets which tile the integers, preprint (2001).

  5. Gy. Hajós: Sur la factorisation des groupes abéliens, Časopis Pěest. Mat. Fys.74 (1950), 157–162.

    Google Scholar 

  6. Gy. Hajós: Sur la problème de factorisation des groupes cycliques, Acta. Math. Sci. Hungar. 1 (1950), 189–195.

    Article  MATH  Google Scholar 

  7. M. N. Kolountzakis: Translational tilings of the integers with long periods, Electronic Journal of Combinatorics10(1) (2003), #R22.

    MathSciNet  Google Scholar 

  8. M. N. Kolountzakis and M. Matolcsi: Tiles with no spectra, Forum Math. 18(3) (2006), 519–528.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. T. Long: Addition theorems for sets of integers, Pacific J. Math. 23(1) (1967), 107–112.

    MATH  MathSciNet  Google Scholar 

  10. D. J. Newman: Tesselation of integers, J. Number Theory9 (1977), 107–111.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Rédei: Über das Kreisteilungspolynom, Acta Math. Acad. Sci. Hungar. 5 (1954), 27–28.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Z. Ruzsa: Appendix, in: R. Tijdeman: Periodicity and Almost-periodicity, preprint (August 2002).

  13. A. D. Sands: On a conjecture of G. Hajós, Glasgow Math. Journal15 (1974), 88–89.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. K. Stein and S. Szabó: Algebra and Tilings, Mathematical Association of America Carus Mathematical Monograph series No. 25 (1994).

  15. J. P. Steinberger: A class of prototiles with doubly generated level semigroups, Journal of Combinatorial Theory, Series A106(1) (2004), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. P. Steinberger: Multiple tilings of ℤ with long periods and tiles with manygenerated level semigroups, New York Journal of Mathematics11 (2005), 445–456.

    MATH  MathSciNet  Google Scholar 

  17. J. P. Steinberger: Indecomposable tilings of the integers with exponentially long periods, Electronic Journal of Combinatorics12 (2005), #R36.

    MathSciNet  Google Scholar 

  18. J. P. Steinberger: Quasiperiodic group factorizations, Resultate der Mathematik51(3–4) (2008), 319–338.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. Swenson: Direct sum subset decompositions of ℤ, Pacific J. Math.53 (1974), 629–633.

    MATH  MathSciNet  Google Scholar 

  20. S. Szabó: Quasi-periodic factorizations, personal communication.

  21. S. Szabó: Topics in factorization of Abelian groups, Birkhauser (2004).

  22. R. Tijdeman: Decomposition of the integers as a direct sum of two subsets, in: Number Theory, Paris, 1992–1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Steinberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberger, J.P. Tilings of the integers can have superpolynomial periods. Combinatorica 29, 503–509 (2009). https://doi.org/10.1007/s00493-009-2269-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-009-2269-9

Mathematics Subject Classification (2000)

Navigation