On a graph property generalizing planarity and flatness

Abstract

We introduce a topological graph parameter σ(G), defined for any graph G. This parameter characterizes subgraphs of paths, outerplanar graphs, planar graphs, and graphs that have a flat embedding as those graphs G with σ(G)≤1,2,3, and 4, respectively. Among several other theorems, we show that if H is a minor of G, then σ(H)≤σ(G), that σ(K n )=n−1, and that if H is the suspension of G, then σ(H)=σ(G)+1. Furthermore, we show that µ(G)≤σ(G) + 2 for each graph G. Here µ(G) is the graph parameter introduced by Colin de Verdière in [2].

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. E. Bredon: Topology and Geometry, Springer-Verlag, New York, 1993.

    Google Scholar 

  2. [2]

    Y. Colin de Verdière: Sur un nouvel invariant des graphes et un critère de planarit é, J. Comb. Theory, Ser. B 50 (1990), 11–21.

    MATH  Article  Google Scholar 

  3. [3]

    Y. Colin de Verdière: On a new graph invariant and a criterion of planarity, in: Graph Structure Theory (N. Robertson and P. Seymour, editors), volume 147 of Contemporary Mathematics, pages 137–147. American Mathematical Society, Providence, Rhode Island, 1993.

    Google Scholar 

  4. [4]

    H. van der Holst: A short proof of the planarity characterization of Colin de Verdière, J. Comb. Theory, Ser. B 65 (1995), 269–272.

    MATH  Article  Google Scholar 

  5. [5]

    H. van der Holst: Graphs and obstructions in four dimensions, J. Comb. Theory, Ser. B 96(3) (2006), 388–404.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    H. van der Holst, M. Laurent and A. Schrijver: On a minor-monotone graph invariant, J. Comb. Theory, Ser. B 65 (1995), 291–304.

    MATH  Article  Google Scholar 

  7. [7]

    H. van der Holst, L. Lovász and A. Schrijver: The Colin de Verdière graph parameter, in: Graph Theory and Combinatorial Biology, number 7 in Mathematical Studies, pages 29–85. Bolyai Society, 1999.

  8. [8]

    L. Lovász and A. Schrijver: A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proceedings of the American Mathematical Society 126(5) (1998), 1275–1285.

    MATH  Article  MathSciNet  Google Scholar 

  9. [9]

    W. S. Massey: Singular Homology Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 1980.

    Google Scholar 

  10. [10]

    R. Pendavingh: On the relation between two minor-monotone graph parameters, Combinatorica 18(2) (1998), 281–292.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    M. Richardson: The relative connectivities of symmetric products, Bull. Am. Math. Soc. 41 (1935), 528–534.

    Article  Google Scholar 

  12. [12]

    N. Robertson, P. Seymour and R. Thomas: Sachs’ linkless embedding conjecture, J. Comb. Theory, Ser. B 64(2) (1995), 185–227.

    MATH  Article  MathSciNet  Google Scholar 

  13. [13]

    N. Robertson and P. D. Seymour: Graph minors, XX. Wagner’s conjecture; J. Comb. Theory, Ser. B 92(2) (2004), 325–357.

    MATH  Article  MathSciNet  Google Scholar 

  14. [14]

    P. A. Smith: The topology of involutions, Proc. Natl. Acad. Sci. USA 19 (1933), 612–618.

    Article  Google Scholar 

  15. [15]

    W. T. Wu: On the realization of complexes in Euclidean spaces I, Scientia Sinica VII(3) (1958), 251–297.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hein van der Holst.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van der Holst, H., Pendavingh, R. On a graph property generalizing planarity and flatness. Combinatorica 29, 337–361 (2009). https://doi.org/10.1007/s00493-009-2219-6

Download citation

Mathematics Subject Classification (2000)

  • 05C10
  • 05C50
  • 05C83