The superstar packing problem

Abstract

Hell and Kirkpatrick proved that in an undirected graph, a maximum size packing by a set of non-singleton stars can be found in polynomial time if this star-set is of the form {S 1, S 2, ..., S k } for some k∈ℤ+ (S i is the star with i leaves), and it is NP-hard otherwise. This may raise the question whether it is possible to enlarge a set of stars not of the form {S 1, S 2, ..., S k } by other non-star graphs to get a polynomially solvable graph packing problem. This paper shows such families of depth 2 trees. We show two approaches to this problem, a polynomial alternating forest algorithm, which implies a Berge-Tutte type min-max theorem, and a reduction to the degree constrained subgraph problem of Lovász.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. Cornuéjols: General factors of graphs, J. Combin. Theory Ser. B 42 (1988), 285–296.

    Google Scholar 

  2. [2]

    G. Cornuéjols and D. Hartvigsen: An extension of matching theory, J. Combin. Theory Ser. B 40 (1986), 285–296.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    G. Cornuéjols, D. Hartvigsen and W. Pulleyblank: Packing subgraphs in a graph, Oper. Res. Letter 1 (1981/82), 139–143.

    Article  Google Scholar 

  4. [4]

    D. Hartvigsen, P. Hell and J. Szabó: The k-piece packing problem, J. Graph Theory 52 (2006), 267–293.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    P. Hell and D. G. Kirkpatrick: On the complexity of general graph factor problems, SIAM J. Computing 12 (1983), 601–609.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    P. Hell and D. G. Kirkpatrick: Packings by complete bipartite graphs, SIAM J. Algebraic and Discrete Math. 7 (1986), 113–129.

    Article  MathSciNet  Google Scholar 

  7. [7]

    M. Janata and J. Szabó: Generalized star packing problems, EGRES Technical Reports TR-2004-17 (2004), http://www.cs.elte.hu/egres/.

  8. [8]

    M. Las Vergnas: An extension of Tutte’s 1-factor theorem, Discrete Math. 23 (1978), 241–255.

    MATH  Article  MathSciNet  Google Scholar 

  9. [9]

    M. Loebl and S. Poljak: On matroids induced by packing subgraphs, J. Combin. Theory Ser. B 44 (1988), 338–354.

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    M. Loebl and S. Poljak: Efficient subgraph packing, J. Combin. Theory Ser. B 59 (1993), 106–121.

  11. [11]

    L. Lovász: The factorization of graphs, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), (1970), pp. 243–246.

  12. [12]

    L. Lovász: The factorization of graphs II, Acta Math. Acad. Sci. Hungar. 23 (1972), 223–246.

    MATH  Article  MathSciNet  Google Scholar 

  13. [13]

    J. Szabó: A note on the degree prescribed factor problem, EGRES Technical Reports TR-2004-19 (2004), http://www.cs.elte.hu/egres/.

  14. [14]

    J. Szabó: Graph packings and the degree prescribed subgraph problem, PhD thesis, Eötvös University, Budapest, 2006.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marek Janata.

Additional information

Research is supported by OTKA grants K60802, TS049788 and by European MCRTN Adonet, Contract Grant No. 504438.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janata, M., Szabó, J. The superstar packing problem. Combinatorica 29, 27–48 (2009). https://doi.org/10.1007/s00493-009-1986-4

Download citation

Mathematics Subject Classification (2000)

  • 05C70