Graph-like continua, augmenting arcs, and Menger’s theorem

Abstract

We show that an adaptation of the augmenting path method for graphs proves Menger’s Theorem for wide classes of topological spaces. For example, it holds for locally compact, locally connected, metric spaces, as already known. The method lends itself particularly well to another class of spaces, namely the locally arcwise connected, hereditarily locally connected, metric spaces. Finally, it applies to every space where every point can be separated from every closed set not containing it by a finite set, in particular to every subspace of the Freudenthal compactification of a locally finite, connected graph. While closed subsets of such a space behave nicely in that they are compact and locally connected (and therefore locally arcwise connected), the general subspaces do not: They may be connected without being arcwise connected. Nevertheless, they satisfy Menger’s Theorem.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    R. Aharoni and E. Berger: Menger’s theorem for infinite graphs, preprint.

  2. [2]

    L. M. Blumenthal and K. Menger: Studies in geometry, Freeman, San Francisco, Calif., 1970.

    MATH  Google Scholar 

  3. [3]

    T. Böhme, F. Göring and J. Harant: Menger’s Theorem, J. Graph Theory 37(1) (2001), 35–36.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    H. Bruhn: The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits, J. Combin. Theory Ser. B 92(2) (2004), 235–256.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    H. Bruhn, R. Diestel and M. Stein: Menger’s theorem for infinite graphs with ends, J. Graph Theory 50 (2005), 199–211.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    R. Diestel: The countable Erd?os-Menger Conjecture with ends, J. Combin. Theory Ser. B 87 (2003), 145–161.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    R. Diestel: Graph theory, Third edition, Springer-Verlag, Heidelberg, 2005; Graduate Texts in Mathematics, Volume 173.

    MATH  Google Scholar 

  8. [8]

    R. Diestel: The Erdős-Menger conjecture for source/sink sets with disjoint closures, J. Combin. Theory Ser. B 93 (2005), 107–114.

    MATH  Article  MathSciNet  Google Scholar 

  9. [9]

    R. Diestel: End spaces and spanning trees, J. Combin. Theory Ser. B 96 (2006), 846–854.

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    R. Diestel and D. Kühn: Graph-theoretical versus topological ends of graphs, J. Combin. Theory Ser. B 87 (2003), 197–206.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    R. Diestel and D. Kühn: On infinite cycles I, Combinatorica 24(1) (2004), 68–89.

    Article  Google Scholar 

  12. [12]

    R. Diestel and D. Kühn: On infinite cycles II, Combinatorica 24(1) (2004), 91–116.

    Article  MathSciNet  Google Scholar 

  13. [13]

    R. Diestel and D. Kühn: Topological paths, cycles and spanning trees in infinite graphs, Europ. J. Combin. 25 (2004), 835–862.

    MATH  Article  Google Scholar 

  14. [14]

    G. A. Dirac: Extensions of Menger’s Theorem, J. London Math. Soc. 38 (1963), 148–161.

    MATH  Article  MathSciNet  Google Scholar 

  15. [15]

    R. Engelking: General topology, PWN-Polish Scientific Publishers, Warsaw, 1977.

    MATH  Google Scholar 

  16. [16]

    A. Georgakopoulos: Connected but not path-connected subspaces of infinite graphs, Combinatorica 27(6) (2007), 683–698.

    MATH  Article  MathSciNet  Google Scholar 

  17. [17]

    J. G. Gilbert: Menger’s theorem for topological spaces, Fund. Math. 75(3) (1972), 291–295.

    MathSciNet  Google Scholar 

  18. [18]

    R. Halin: A note on Menger’s theorem for infinite locally finite graphs, Abh. Math. Sem. Univ. Hamburg 40 (1974), 111–114.

    MATH  Article  MathSciNet  Google Scholar 

  19. [19]

    J. H. V. Hunt: An n-arc theorem for Peano spaces, Pac. J. Math. 36 (1971), 351–356.

    MATH  Google Scholar 

  20. [20]

    K. Kuratowski: Topology, Vol. II, New edition (A. Kirkor, trans.), Academic Press, New York, 1968.

    Google Scholar 

  21. [21]

    M. Levin and E. D. Tymchatyn: On the dimension of almost n-dimensional spaces, Proc. Amer. Math. Soc. 127(9) (1999), 2793–2795.

    MATH  Article  MathSciNet  Google Scholar 

  22. [22]

    W. Mccuaig: A simple proof of Menger’s Theorem, J. Graph Theory 8(3) (1984), 427–429.

    MATH  Article  MathSciNet  Google Scholar 

  23. [23]

    K. Menger: Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927), 96–115.

    MATH  Google Scholar 

  24. [24]

    K. Menger: Kurventheorie, Teubner, Berlin-Leipzig, 1932.

    Google Scholar 

  25. [25]

    K. Menger: On the origin of the n-arc theorem, J. Graph Theory 5 (1981), 341–350.

    MATH  Article  MathSciNet  Google Scholar 

  26. [26]

    B. Mohar and C. Thomassen: Graphs on surfaces, Johns Hopkins University Press, Baltimore, 2001.

    MATH  Google Scholar 

  27. [27]

    S. B. Nadler: Continuum theory, Dekker, New York, 1992.

    MATH  Google Scholar 

  28. [28]

    G. Nöbeling: Eine Verschärfung des n-Beinsatzes, Fund. Math. 18 (1931), 23–38.

    Google Scholar 

  29. [29]

    N. Polat: Aspects topologiques de la séparation dans les graphes infinis I, Math. Z. 165 (1979), 73–100.

    Article  MathSciNet  Google Scholar 

  30. [30]

    N. Polat: A Mengerian theorem for infinite graphs with ideal points, J. Combin. Theory Ser. B 51(2) (1991), 248–255.

    MATH  Article  MathSciNet  Google Scholar 

  31. [31]

    N. E. Rutt: Concerning the cut points of a continuous curve when the arc curve, AB, contains exactly n independent arcs; Amer. J. Math. 51(2) (1929), 217–246.

    MATH  Article  MathSciNet  Google Scholar 

  32. [32]

    C. Thomassen: Classification of locally 2-connected compact metric spaces, Combinatorica 25(1) (2005), 85–103.

    MATH  Article  MathSciNet  Google Scholar 

  33. [33]

    E. D. Tymchatyn: Some n-arc theorems, Pac. J. Math. 66(1) (1976), 291–294.

    MATH  MathSciNet  Google Scholar 

  34. [34]

    E. D. Tymchatyn: Compactification of hereditarily locally connected spaces, Can. J. Math. 29(6) (1977), 1223–1229.

    MATH  MathSciNet  Google Scholar 

  35. [35]

    A. Vella: A fundamentally topological perspective on graph theory, Ph.D. thesis, U. Waterloo, 2005. Available at http://etd.uwaterloo.ca/etd/avella2005.pdf

  36. [36]

    A. Vella and R. B. Richter: Cycle spaces in topological spaces, J. Graph Theory, to appear.

  37. [37]

    G. T. Whyburn: The cyclic and higher connectivity of locally connected spaces, Amer. J. Math. 53 (1931), 427–442.

    Article  MathSciNet  Google Scholar 

  38. [38]

    G. T. Whyburn: On n-arc connectedness, Trans. Amer. Math. Soc. 63 (1948), 452–456.

    MATH  Article  MathSciNet  Google Scholar 

  39. [39]

    R. L. Wilder: Characterizations of continuous curves that are perfectly continuous, Proc. Nat. Acad. Sci. USA 15(7) (1929), 614–621.

    MATH  Article  Google Scholar 

  40. [40]

    B. Zelinka: Uneigentliche Knotenpunkte eines Graphen, Ĉasopis Pêst. Mat. 95 (1970), 155–169.

    MATH  MathSciNet  Google Scholar 

  41. [41]

    L. Zippin: Independent arcs of a continuous curve, Ann. of Math. (2) 34(1) (1933), 95–113.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carsten Thomassen.

Additional information

This work was carried out while Antoine Vella was a Marie Curie Fellow at the Technical University of Denmark, as part of the research project TOPGRAPHS (Contract MEIF-CT-2005-009922), under the supervision of Carsten Thomassen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomassen, C., Vella, A. Graph-like continua, augmenting arcs, and Menger’s theorem. Combinatorica 28, 595 (2008). https://doi.org/10.1007/s00493-008-2342-9

Download citation

Mathematics Subject Classification (2000)

  • 05C10
  • 57M15