## Abstract

We introduce a new combinatorial object, the double-permutation sequence, and use it to encode a family of mutually disjoint compact convex sets in the plane in a way that captures many of its combinatorial properties. We use this encoding to give a new proof of the Edelsbrunner-Sharir theorem that a collection of *n* compact convex sets in the plane cannot be met by straight lines in more than 2*n*-2 combinatorially distinct ways. The encoding generalizes the authors’ encoding of point configurations by “allowable sequences” of permutations. Since it applies as well to a collection of compact connected sets with a specified pseudoline arrangement \( \mathcal{A} \) of separators and double tangents, the result extends the Edelsbrunner-Sharir theorem to the case of geometric permutations induced by pseudoline transversals compatible with \( \mathcal{A} \).

This is a preview of subscription content, access via your institution.

## References

- [1]
S. Basu, J. E. Goodman, A. Holmsen and R. Pollack: The Hadwiger transversal theorem for pseudolines, in:

*Combinatorial and Computational Geometry*(*J. E. Goodman, J. Pach and E. Welzl*,*eds.*),*Math. Sci. Res. Inst. Publ.***52**, Cambridge Univ. Press, Cambridge, 2005, pp. 79–85. - [2]
A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler:

*Oriented Matroids*, 2nd Ed., Volume**46**of Encyclopedia of Mathematics, Cambridge Univ. Press, 1999. - [3]
J. Eckhoff: Helly, Radon, and Carathéodory type theorems; in:

*Handbook of Convex Geometry*(*P. M. Gruber and J. M. Wills*,*eds.*), Volume**A**, North-Holland, Amsterdam, 1993, pp. 389–448. - [4]
H. Edelsbrunner and M. Sharir: The maximum number of ways to stab

*n*convex noninstersecting sets in the plane is 2*n*-2,*Discrete Comput. Geom.***5**(1990), 35–42. - [5]
J. E. Goodman: Proof of a conjecture of Burr, Grünbaum, and Sloane;

*Discrete Math.***32**(1980), 27–35. - [6]
J. E. Goodman: Pseudoline arrangements, in:

*Handbook of Discrete and Computational Geometry*(*J. E. Goodman and J. O’Rourke*,*eds.*), 2nd edition, CRC Press, Boca Raton, 2004, pp. 97–128. - [7]
J. E. Goodman and R. Pollack: On the combinatorial classification of nondegenerate configurations in the plane,

*J. Combin. Theory, Ser. A***29**(1980), 220–235. - [8]
J. E. Goodman and R. Pollack: Proof of Grünbaum’s conjecture on the stretchability of certain arrangements of pseudolines,

*J. Combin. Theory, Ser. A***29**(1980), 385–390. - [9]
J. E. Goodman, R. Pollack and R. Wenger: Geometric transversal theory, in:

*New Trends in Discrete and Computational Geometry (J. Pach*,*ed.)*, Volume**10**of Algor. Combin., Springer-Verlag, Berlin, 1993, pp. 163–198. - [10]
J. E. Goodman, R. Pollack, R. Wenger and T. Zamfirescu: Arrangements and topological planes,

*Amer. Math. Monthly***101**(1994), 866–878. - [11]
B. Grünbaum: The importance of being straight, in:

*Proc. 12th Biennial Sem. Canad. Math. Congr. on Time Series and Stochastic Processes, Convexity and Combinatorics*, (Vancouver, B.C.), 1969, Canad. Math. Congr., Montreal, pp. 243–254. - [12]
B. Grünbaum:

*Arrangements and Spreads*, Volume**10**of CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, 1972. - [13]
M. Katchalski, T. Lewis and J. Zaks: Geometric permutations for convex sets,

*Discrete Math.***54**(1985), 271–284. - [14]
F. W. Levi: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade,

*Ber. Math.-Phys. Kl. Sächs. Akad. Wiss.***78**(1926), 256–267. - [15]
L. Lovász, K. Vesztergombi, U. Wagner and E. Welzl: Convex quadrilaterals and

*k*-sets, in:*Towards a Theory of Geometric Graphs (J. Pach*,*ed.)*, Contemp. Math.**342**, Amer. Math. Soc., Providence, 2004, pp. 139–148. - [16]
J. Pach and R. Pinchasi: On the number of balanced lines,

*Discrete Comput. Geom.***25**(2001), 611–628. - [17]
M. Sharir and P. K. Agarwal:

*Davenport-Schinzel Sequences and Their Geometric Applications*, Cambridge Univ. Press, New York, 1995. - [18]
R. Wenger: Helly-type theorems and geometric transversals, in:

*Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O’Rourke*,*eds.)*, 2nd edition, CRC Press, Boca Raton, 2004, pp. 73–96.

## Author information

### Affiliations

### Corresponding author

## Additional information

Supported in part by NSA grant MDA904-03-I-0087 and PSC-CUNY grant 65440-0034.

Supported in part by NSF grant CCR-9732101.

## Rights and permissions

## About this article

### Cite this article

Goodman, J.E., Pollack, R. The combinatorial encoding of disjoint convex sets in the plane.
*Combinatorica* **28, **69–81 (2008). https://doi.org/10.1007/s00493-008-2239-7

Received:

Published:

Issue Date:

### Mathematics Subject Classification (2000)

- 52A35
- 52C30