When does the giant component bring unsatisfiability?

Abstract

We study random constraint satisfaction problems using the wide class of models introduced by the author [36], which includes various forms of random SAT and other well-studied problems. We determine precisely which of these models remain almost surely satisfiable when the number of clauses is increased beyond the point at which a giant component appears in the underlying constraint hypergraph.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    D. Achlioptas: Setting two variables at a time yields a new lower bound for random 3-SAT, in: Proceedings of the 32nd STOC, (2000), pp. 28–37.

  2. [2]

    D. Achlioptas, P. Beame and M. Molloy: A sharp threshold in proof complexity yields a lower bound for satisfiability search, J. Comp. Sys. Sci. 68(2) (2004), 238–268. Conference version in: Proceedings of the 33rd STOC, (2001), pp. 337–346.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    D. Achlioptas, A. Chtcherba, G. Istrate and C. Moore: The phase transition in NAESAT and 1-in-k SAT, in: Proceedings of SODA, (2001), pp. 721–722.

  4. [4]

    D. Achlioptas and E. Friedgut: A threshold for k-colourability, Random Structures and Algorithms 14 (1999), 63–70.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    D. Achlioptas, L. Kirousis, E. Kranakis, D. Krizanc, M. Molloy and Y. Stamatiou: Random constraint satisfaction: a more accurate picture; Constraints 6(4) (2001), 329–344. Conference version in: Proceedings of CP, (1997), pp. 107–120.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    D. Achlioptas and M. Molloy: Analysis of a list-coloring algorithm on a random graph, in: Proceedings of the 38th FOCS, (1997), pp. 204–212.

  7. [7]

    D. Achlioptas and M. Molloy: Almost all graphs with 2.522n edges are not 3-colorable, Electronic Journal of Combinatorics 6(1) (1999), #R29.

    Google Scholar 

  8. [8]

    D. Achlioptas and C. Moore: Random k-SAT: Two moments suffice to cross a sharp threshold; SIAM J. Comput. 36 (2006), 740–762. Conference version in: Proceedings of the 43rd FOCS, (2002), pp. 779–788.

    MATH  Article  MathSciNet  Google Scholar 

  9. [9]

    D. Achlioptas and C. Moore: Almost all graphs with average degree 4 are 3-colorable, J. Comp. Sys. Sci. 67(2) (2003), 441–471. Conference version in: Proceedings of STOC, (2002).

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    D. Achlioptas and G. B. Sorkin: Optimal myopic algorithms for random 3-SAT, in: Proceedings of the 41st FOCS, (2000), 590–600.

  11. [11]

    P. Beame, R. Karp, T. Pitassi and M. Saks: The efficiency of resolution and Davis-Putnam procedures, SIAM J. Comput. 31 (2002), 1048–1075.

    MATH  Article  MathSciNet  Google Scholar 

  12. [12]

    B. Bollobás: Random Graphs, Academic Press, London, 1985.

    Google Scholar 

  13. [13]

    B. Bollobás, C. Borgs, J. T. Chayes, J. H. Kim and D. B. Wilson: The scaling window of the 2-SAT transition, Random Structures and Algorithm 18 (2001), 201–256.

    MATH  Article  Google Scholar 

  14. [14]

    V. Chvátal and B. Reed: Mick gets some (the odds are on his side), in: Proceedings of the 33rd FOCS, (1992), pp. 620–627.

  15. [15]

    V. Chvátal and E. Szemerédi: Many hard examples for resolution, Journal of the ACM 35 (1988), 759–768.

    MATH  Article  Google Scholar 

  16. [16]

    N. Creignou and H. Daude: Generalized satisfiability problems: minimal elements and phase transitions; Th. Comp. Sci. 302 (2003), 417–430.

    MATH  Article  MathSciNet  Google Scholar 

  17. [17]

    N. Creignou and H. Daude: Combinatorial sharpness criterion and phase transition classification for random CSP’s, Information and Computation 190 (2004), 220–238.

    MATH  Article  MathSciNet  Google Scholar 

  18. [18]

    O. Dubois and J. Mandler: On the non-3-colourability of random graphs, arXiv:math/0209087.

  19. [19]

    O. Dubois, Y. Boufkhad and J. Mandler: Typical random 3-SAT formulae and the satisfiability threshold, in: Proceedings of the 11th SODA, (2000), pp. 126–127.

  20. [20]

    P. Erdős and A. Rényi: On the evolution of random graphs, Mat. Kutató Int. Közl. 5 (1960), 17–60.

    Google Scholar 

  21. [21]

    W. Fernandex de la Vega: On random 2-SAT, manuscript (1992).

  22. [22]

    N. Fountoulakis and C. McDiarmid: Upper bounds on the non-3-colourability threshold of random graphs, Discrete Math. & Th. Comp. Sci. 5(1) (2002), 205–226.

    MATH  MathSciNet  Google Scholar 

  23. [23]

    E. Friedgut and an appendix by J. Bourgain: Sharp thresholds of graph properties and the k-SAT problem, J. Am. Math. Soc. 12 (1999), 1017–1054.

    MATH  Article  MathSciNet  Google Scholar 

  24. [24]

    I. Gent, E. MacIntyre, P. Prosser, B. Smith and T. Walsh: Random constraint satisfaction: flaws and structure; Constraints 6 (2001), 345–372.

    MATH  Article  MathSciNet  Google Scholar 

  25. [25]

    A. Goerdt: A threshold for unsatisfiability, J. Comp. Sys. Sci. 53 (1996), 469–486.

    MATH  Article  MathSciNet  Google Scholar 

  26. [26]

    G. Istrate: Threshold properties of random boolean constraint satisfaction problems, Disc. Appl. Math. 153(1–3) Typical Case Complexity and Phase Transitions, (2005), 141–152.

    MATH  Article  MathSciNet  Google Scholar 

  27. [27]

    H. Hatami and M. Molloy: Sharp thresholds for constraint satisfaction problems and homomorphisms, Random Structures and Algorithms 33(3) (2008), 310–332.

    MATH  Article  MathSciNet  Google Scholar 

  28. [28]

    S. Janson, T. Łuczak and A. Ruciński: Random Graphs, Wiley, New York (2000).

    Google Scholar 

  29. [29]

    S. Janson, Y. Stamatiou and M. Vanvakari: Bounding the unsatisfiability threshold of random 3-SAT, Random Structures and Algorithms 17 (2000), 103–116.

    MATH  Article  MathSciNet  Google Scholar 

  30. [30]

    R. Karp: The transitive closure of a random digraph, Random Structures and Algorithms 1 (1990), 73–94.

    MATH  Article  MathSciNet  Google Scholar 

  31. [31]

    A. Kaporis, L. Kirousis and E. Lalas: The probabilistic analysis of a greedy satisfiability algorithm, Random Structures and Algorithms 28(4) (2006), 444–480. Conference version in: Proceedings of the 10th ESA, (2002), pp. 574–585.

    MATH  Article  MathSciNet  Google Scholar 

  32. [32]

    A. Kaporis, L. Kirousis and Y. Stamatiou: A note on the non-colourability threshold of a random graph, Electronic J. Comb. 7 (2000), #R29.

    Google Scholar 

  33. [33]

    L. Kirousis, E. Kranakis, D. Krizanc and Y. Stamatiou: Approximating the unsatisfiability threshold of random formulas, Random Structures and Algorithms 12 (1998), 253–269.

    MATH  Article  MathSciNet  Google Scholar 

  34. [34]

    T. Łuczak and M. Karonski: The phase transition in a random hypergraph, J. Comput. Appl. Math. 142 (2002), 125–135.

    MATH  Article  MathSciNet  Google Scholar 

  35. [35]

    D. Mitchell: Resolution complexity of random constraints, in: Proceedings of Principles and Practice of Constraint Programming — CP, (2002), pp. 295–309.

  36. [36]

    M. Molloy: Models for random constraint satisfaction problems, SIAM J. Comput. 32(4) (2003), 935–949. Conference version in: Proceedings of the STOC, (2002), pp. 209–217.

    MATH  Article  MathSciNet  Google Scholar 

  37. [37]

    M. Molloy and M. Salavatipour: The resolution complexity of random constraint satisfaction problems, SIAM J. Comput. 37(3) (2007), 895–922. Conference version in Proceedings of FOCS 2003.

    MATH  Article  MathSciNet  Google Scholar 

  38. [38]

    R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky: Determining computational complexity from characteristic ‘phase transitions’, Nature 400(8) (1999), 133–137.

    MathSciNet  Google Scholar 

  39. [39]

    D. S. Passman: Permutation Groups, Benjamin, New York (1968).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Molloy.

Additional information

This work is supported by an NSERC Research Grant and a Sloan Research Fellowship. Much of this work was done while the author was a Visiting Researcher at Microsoft Research.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molloy, M. When does the giant component bring unsatisfiability?. Combinatorica 28, 693–734 (2008). https://doi.org/10.1007/s00493-008-2123-5

Download citation

Mathematics Subject Classification (2000)

  • 05C80