A phase transition for the metric distortion of percolation on the hypercube


Let H n be the hypercube {0, 1}n, and denote by H n,p Bernoulli bond percolation on H n , with parameter p = n α. It is shown that at α = 1/2 there is a phase transition for the metric distortion between H n and H n,p . For α < 1/2, the giant component of H n,p is likely to be quasi-isometric to H n with constant distortion (depending only on α). For 1/2 < α < 1 the minimal distortion tends to infinity as a power of n. We argue that the phase 1/2 < α < 1 is an analogue of the non-uniqueness phase appearing in percolation on non-amenable graphs.

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Ajtai, J. Komlós and E. Szemerédi: Largest random component of a k-cube, Combinatorica 2(1) (1982), 1–7.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    N. Alon and J. Spencer: The Probabilistic Method, John Wiley and Sons, New York, 1992.

    MATH  Google Scholar 

  3. [3]

    N. Alon, I. Benjamini and A. Stacey: Percolation on finite graphs and isoperimetric inequalities, Ann. Probab. 32(3A) (2004), 1727–1745. arXiv:math.PR/0207112.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    O. Angel, I. Benjamini, E. Ofek and U. Wieder: Routing Complexity in Faulty Networks, Rand. Str. and Algo., to appear (2007). http://dx.doi.org/10.1002/rsa.20163

  5. [5]

    I. Benjamini and O. Schramm: Percolation beyond ℤd, many questions and a few answers; Elec. Comm. Prob. 1(8) (1996), 71–82 (electronic).

    MATH  MathSciNet  Google Scholar 

  6. [6]

    C. Borgs, J. Chayes, R. van der Hofstad, G. Slade and J. Sencer: Random subgraphs of finite graphs, I. The scaling window under the triangle condition; Rand. Str. and Algo. 27(2) (2005), 137–184.

    MATH  Article  Google Scholar 

  7. [7]

    J. Hastad, T. Leighton and M. Newman: Reconfiguring a Hypercube in the Presence of Faults (Extended Abstract), in Proc. of the 19th ACM Symp. on Theory of Computing, 274–284, 1987.

  8. [8]

    N. Linial: Finite Metric Spaces — Combinatorics, Geometry and Algorithms; in Proc. of the Inter. Cong. of Math. III, 573–586, Beijing, 2002.

  9. [9]

    R. Lyons: Phase transitions on nonamenable graphs, J. Math. Phys. 41(3) (2000), 1099–1126. (Probabilistic techniques in equilibrium and nonequilibrium statistical physics.)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Omer Angel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Angel, O., Benjamini, I. A phase transition for the metric distortion of percolation on the hypercube. Combinatorica 27, 645–658 (2007). https://doi.org/10.1007/s00493-007-2241-5

Download citation

Mathematics Subject Classification (2000)

  • 05D40
  • 68R10
  • 60D05